1,879 research outputs found

    Effects of impurities on radiation damage of silicon solar cells

    Get PDF
    Impurities effects on radiation damage of silicon solar cell

    Charge transport through molecular ensembles: Recent progress in molecular electronics featured

    Get PDF
    This review focuses on molecular ensemble junctions in which the individual molecules of a monolayer each span two electrodes. This geometry favors quantum mechanical tunneling as the dominant mechanism of charge transport, which translates perturbances on the scale of bond lengths into nonlinear electrical responses. The ability to affect these responses at low voltages and with a variety of inputs, such as de/protonation, photon absorption, isomerization, oxidation/reduction, etc., creates the possibility to fabricate molecule-scale electronic devices that augment; extend; and, in some cases, outperform conventional semiconductor-based electronics. Moreover, these molecular devices, in part, fabricate themselves by defining single-nanometer features with atomic precision via self-assembly. Although these junctions share many properties with single-molecule junctions, they also possess unique properties that present a different set of problems and exhibit unique properties. The primary trade-off of ensemble junctions is complexity for functionality; disordered molecular ensembles are significantly more difficult to model, particularly atomistically, but they are static and can be incorporated into integrated circuits. Progress toward useful functionality has accelerated in recent years, concomitant with deeper scientific insight into the mediation of charge transport by ensembles of molecules and experimental platforms that enable empirical studies to control for defects and artifacts. This review separates junctions by the trade-offs, complexity, and sensitivity of their constituents; the bottom electrode to which the ensembles are anchored and the nature of the anchoring chemistry both chemically and with respect to electronic coupling; the molecular layer and the relationship among electronic structure, mechanism of charge transport, and electrical output; and the top electrode that realizes an individual junction by defining its geometry and a second molecule–electrode interface. Due to growing interest in and accessibility of this interdisciplinary field, there is now sufficient variety in each of these parts to be able to treat them separately. When viewed this way, clear structure–function relationships emerge that can serve as design rules for extracting useful functionality

    Thiol density dependent classical potential for methyl-thiol on a Au(111) surface

    Full text link
    A new classical potential for methyl-thiol on a Au(111) surface has been developed using density functional theory electronic structure calculations. Energy surfaces between methyl-thiol and a gold surface were investigated in terms of symmetry sites and thiol density. Geometrical optimization was employed over all the configurations while minimum energy and thiol height were determined. Finally, a new interatomic potential has been generated as a function of thiol density, and applications to coarse-grained simulations are presented

    Anchored phosphatases modulate glucose homeostasis.

    Get PDF
    Endocrine release of insulin principally controls glucose homeostasis. Nutrient-induced exocytosis of insulin granules from pancreatic β-cells involves ion channels and mobilization of Ca(2+) and cyclic AMP (cAMP) signalling pathways. Whole-animal physiology, islet studies and live-β-cell imaging approaches reveal that ablation of the kinase/phosphatase anchoring protein AKAP150 impairs insulin secretion in mice. Loss of AKAP150 impacts L-type Ca(2+) currents, and attenuates cytoplasmic accumulation of Ca(2+) and cAMP in β-cells. Yet surprisingly AKAP150 null animals display improved glucose handling and heightened insulin sensitivity in skeletal muscle. More refined analyses of AKAP150 knock-in mice unable to anchor protein kinase A or protein phosphatase 2B uncover an unexpected observation that tethering of phosphatases to a seven-residue sequence of the anchoring protein is the predominant molecular event underlying these metabolic phenotypes. Thus anchored signalling events that facilitate insulin secretion and glucose homeostasis may be set by AKAP150 associated phosphatase activity

    Modeling transport through single-molecule junctions

    Full text link
    Non-equilibrium Green's functions (NEGF) formalism combined with extended Huckel (EHT) and charging model are used to study electrical conduction through single-molecule junctions. Analyzed molecular complex is composed of asymmetric 1,4-Bis((2'-para-mercaptophenyl)-ethinyl)-2-acetyl-amino-5-nitro-benzene molecule symmetrically coupled to two gold electrodes [Reichert et al., Phys. Rev. Lett. Vol.88 (2002), pp. 176804]. Owing to this model, the accurate values of the current flowing through such junction can be obtained by utilizing basic fundamentals and coherently deriving model parameters. Furthermore, the influence of the charging effect on the transport characteristics is emphasized. In particular, charging-induced reduction of conductance gap, charging-induced rectification effect and charging-generated negative value of the second derivative of the current with respect to voltage are observed and examined for molecular complex.Comment: 8 pages, 3 figure

    A benchmark for epithelial cell tracking

    Get PDF
    Segmentation and tracking of epithelial cells in light microscopy (LM) movies of developing tissue is an abundant task in cell- and developmental biology. Epithelial cells are densely packed cells that form a honeycomb-like grid. This dense packing distinguishes membrane-stained epithelial cells from the types of objects recent cell tracking benchmarks have focused on, like cell nuclei and freely moving individual cells. While semi-automated tools for segmentation and tracking of epithelial cells are available to biologists, common tools rely on classical watershed based segmentation and engineered tracking heuristics, and entail a tedious phase of manual curation. However, a different kind of densely packed cell imagery has become a focus of recent computer vision research, namely electron microscopy (EM) images of neurons. In this work we explore the benefits of two recent neuron EM segmentation methods for epithelial cell tracking in light microscopy. In particular we adapt two different deep learning approaches for neuron segmentation, namely Flood Filling Networks and MALA, to epithelial cell tracking. We benchmark these on a dataset of eight movies with up to 200 frames. We compare to Moral Lineage Tracing, a combinatorial optimization approach that recently claimed state of the art results for epithelial cell tracking. Furthermore, we compare to Tissue Analyzer, an off-the-shelf tool used by Biologists that serves as our baseline

    Nondestructive Inspection and Evaluation of Metal Matrix Composites

    Full text link
    A review is presented of work performed in our laboratory on the nondestructive inspection of metal matrix composites. In order to obtain damage representative of that which occurs in service, the specimens were mechanically loaded to intermediate load levels below that which causes final, catastrophic failure. Various nondestructive techniques were used both during and after the applied loadings to follow damage initiation and progress.</p

    Mutualistic Coupling Between Vocabulary and Reasoning Supports Cognitive Development During Late Adolescence and Early Adulthood.

    Get PDF
    One of the most replicable findings in psychology is the positive manifold: the observation that individual differences in cognitive abilities are universally positively correlated. Investigating the developmental origin of the positive manifold is crucial to understanding it. In a large longitudinal cohort of adolescents and young adults ( N = 785; n = 566 across two waves, mean interval between waves = 1.48 years; age range = 14-25 years), we examined developmental changes in two core cognitive domains, fluid reasoning and vocabulary. We used bivariate latent change score models to compare three leading accounts of cognitive development: g-factor theory, investment theory, and mutualism. We showed that a mutualism model, which proposes that basic cognitive abilities directly and positively interact during development, provides the best account of developmental changes. We found that individuals with higher scores in vocabulary showed greater gains in matrix reasoning and vice versa. These dynamic coupling pathways are not predicted by other accounts and provide a novel mechanistic window into cognitive development.The Neuroscience in Psychiatry Network is supported by a strategic award from the Wellcome Trust to the University of Cambridge and University College London (095844/Z/11/Z). R. A. Kievit is supported by the Wellcome Trust (Grant No. 107392/Z/15/Z) and the UK Medical Research Council (MC-A060-5PR61). P. Fonagy is funded by a National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0514-10157). P. Fonagy was in part supported by the NIHR Collaboration for Leadership in Applied Health Research and Care (CLAHRC) North Thames at Barts Health National Health Service (NHS) Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the UK Department of Health

    Conductance statistics from a large array of sub-10 nm molecular junctions

    Full text link
    Devices made of few molecules constitute the miniaturization limit that both inorganic and organic-based electronics aspire to reach. However, integration of millions of molecular junctions with less than 100 molecules each has been a long technological challenge requiring well controlled nanometric electrodes. Here we report molecular junctions fabricated on a large array of sub-10 nm single crystal Au nanodots electrodes, a new approach that allows us to measure the conductance of up to a million of junctions in a single conducting Atomic Force Microscope (C-AFM) image. We observe two peaks of conductance for alkylthiol molecules. Tunneling decay constant (beta) for alkanethiols, is in the same range as previous studies. Energy position of molecular orbitals, obtained by transient voltage spectroscopy, varies from peak to peak, in correlation with conductance values.Comment: ACS Nano (in press
    • …
    corecore