859 research outputs found

    Dispersal Dynamics of the Bivalve Gemma Gemma in a Patchy Environment

    Full text link
    The purpose of this study was to analyze the dispersal dynamics of the ovoviviparous bivalve Gemma gemma (hereafter referred to as Gemma) in an environment disturbed by the pit-digging activities of horseshoe crabs, Limulus polyphemus. Gemma broods its young and has no planktonic larval stage, so all dispersal is the result of juvenile and adult movement. Animal movement was measured using natural crab pits, hand-dug simulated crab pits, and cylindrical bottom traps in the intertidal zone at Tom\u27s Cove, Virginia, USA. This study demonstrated that horseshoe crabs create localized patches with reduced densities of Gemma, that all sizes and ages of Gemma quickly disperse into these low density patches, and that the mechanism of dispersal is passive bedload and suspended load transport. Freshly excavated natural pits had significantly lower Gemma densities than did undisturbed background sediment, but there were no significant differences in total density of other species, number of species, and species diversity (H\u27). Equitability (J\u27) was greater in pits than in controls because of the reduced abundance of Gemma, the numerically dominant species. Newly dug simulated crab pits also had significantly lower Gemma densities than controls and returned to control levels by the next day. Density recovery trajectories for individually marked pits showed consistent responses in summer and fall, but not in winter when low Gemma abundance resulted in greater variability among pits. Significant positive correlations between the volume of sediment and the number of Gemma collected per bottom trap support the hypothesis that Gemma dispersal is a passive transport phenomenon. Assuming no active, density-dependent movement, the product of the Gemma density frequency distribution in undisturbed background sediment and the frequency distribution of sediment volume collected per trap created a predicted Gemma frequency distribution in traps that matched the actual distribution. Absolute dispersal rates and relative dispersal rates (absolute dispersal rate divided by background density in undisturbed sediment) into pits and traps were greater in summer than winter. Dispersal rate results suggest that increased horseshoe crab disturbance in summer may cause an increase in Gemma transport. Because Gemma individuals are dispersed by hydrodynamic action, it was expected that small, young individuals would be most easily transported in the bedload. There was, however, little evidence that movement into pits and traps was size- or age-selective. Most recent benthic dispersal research has focused on the large-scale movement and settlement patterns of invertebrate larvae. The results from this study illustrate that dispersal of bottom-dwelling juveniles and adults plays an important role in regulating the local distribution and abundance of Gemma. Previous workers have shown that young Gemma live in dense aggregations and that growth and fecundity are reduced at such high densities, leading to population crashes. This study demonstrated a mechanism by which Gemma disperses into low-density patches where intraspecific competition may be mitigated, possibly resulting in enhanced individual reproductive success and population fitness

    Double Counting in LDA+DMFT - The Example of NiO

    Full text link
    An intrinsic issue of the LDA+DMFT approach is the so called double counting of interaction terms. How to choose the double-counting potential in a manner that is both physically sound and consistent is unknown. We have conducted an extensive study of the charge transfer system NiO in the LDA+DMFT framework using quantum Monte Carlo and exact diagonalization as impurity solvers. By explicitly treating the double-counting correction as an adjustable parameter we systematically investigated the effects of different choices for the double counting on the spectral function. Different methods for fixing the double counting can drive the result from Mott insulating to almost metallic. We propose a reasonable scheme for the determination of double-counting corrections for insulating systems.Comment: 7 pages, 6 figure

    A comparative study of deconvolution techniques for quantum-gas microscope images

    Full text link
    Quantum-gas microscopes are used to study ultracold atoms in optical lattices at the single particle level. In these system atoms are localised on lattice sites with separations close to or below the diffraction limit. To determine the lattice occupation with high fidelity, a deconvolution of the images is often required. We compare three different techniques, a local iterative deconvolution algorithm, Wiener deconvolution and the Lucy-Richardson algorithm, using simulated microscope images. We investigate how the reconstruction fidelity scales with varying signal-to-noise ratio, lattice filling fraction, varying fluorescence levels per atom, and imaging resolution. The results of this study identify the limits of singe-atom detection and provide quantitative fidelities which are applicable for different atomic species and quantum-gas microscope setups

    Precise Experimental Investigation of Eigenmodes in a Planar Ion Crystal

    Full text link
    The accurate characterization of eigenmodes and eigenfrequencies of two-dimensional ion crystals provides the foundation for the use of such structures for quantum simulation purposes. We present a combined experimental and theoretical study of two-dimensional ion crystals. We demonstrate that standard pseudopotential theory accurately predicts the positions of the ions and the location of structural transitions between different crystal configurations. However, pseudopotential theory is insufficient to determine eigenfrequencies of the two-dimensional ion crystals accurately but shows significant deviations from the experimental data obtained from resolved sideband spectroscopy. Agreement at the level of 2.5 x 10^(-3) is found with the full time-dependent Coulomb theory using the Floquet-Lyapunov approach and the effect is understood from the dynamics of two-dimensional ion crystals in the Paul trap. The results represent initial steps towards an exploitation of these structures for quantum simulation schemes.Comment: 5 pages, 4 figures, supplemental material (mathematica and matlab files) available upon reques

    A global carbon and nitrogen isotope perspective on modern and ancient human diet

    Get PDF
    Stable carbon and nitrogen isotope analyses are widely used to infer diet and mobility in ancient and modern human populations, potentially providing a means to situate humans in global food webs. We collated 13,666 globally distributed analyses of ancient and modern human collagen and keratin samples. We converted all data to a common “Modern Diet Equivalent” reference frame to enable direct comparison among modern human diets, human diets prior to the advent of industrial agriculture, and the natural environment. This approach reveals a broad diet prior to industrialized agriculture and continued in modern subsistence populations, consistent with the human ability to consume opportunistically as extreme omnivores within complex natural food webs and across multiple trophic levels in every terrestrial and many marine ecosystems on the planet. In stark contrast, isotope dietary breadth across modern nonsubsistence populations has compressed by two-thirds as a result of the rise of industrialized agriculture and animal husbandry practices and the globalization of food distribution networks

    Robust local vegetation records from dense archaeological shell matrixes: a palynological analysis of the Thundiy shell deposit, Bentinck Island, Gulf of Carpentaria, Australia

    Get PDF
    This study investigates the palynological remains (both fossil pollen and charcoal) recovered from the Thundiy shell midden deposit, Bentinck Island, Gulf of Carpentaria, northern Australia, to provide a vegetation and fire record for this site, which sheds light on human occupation of the southern Wellesley Archipelago over the late Holocene. Results show that the development of a high-density shell deposit by human activities was directly responsible for pollen preservation, possibly through the creation of a moist, anaerobic environment that reduces oxidation of pollen grains. The presence of recoverable pollen from a shell midden deposit from Bentinck Island provides a valuable new proxy to provide greater context for archaeological records, particularly in terms of local vegetation information and potential insight into human land management practices

    Palaeogeography and voyage modeling indicates early human colonization of Australia was likely from Timor-Roti

    Get PDF
    Anatomically Modern Humans (AMHs) dispersed rapidly through island southeast Asia (Sunda and Wallacea) and into Sahul (Australia, New Guinea and the Aru Islands), before 50,000 years ago. Multiple routes have been proposed for this dispersal and all involve at least one multi-day maritime voyage approaching 100 km. Here we use new regional-scale bathymetry data, palaeoenvironmental reconstruction, an assessment of vertical land movements and drift modeling to assess the potential for an initial entry into northwest Australia from southern Wallacea (Timor-Roti). From ∼70,000 until ∼10,000 years ago, a chain of habitable, resource-rich islands were emergent off the coast of northwest Australia (now mostly submerged). These were visible from high points close to the coast on Timor-Roti and as close as 87 km. Drift models suggest the probability of accidental arrival on these islands from Timor-Roti was low at any time. However, purposeful voyages in the summer monsoon season were very likely to be successful over 4–7 days. Genomic data suggests the colonizing population size was >72–100 individuals, thereby indicating deliberate colonization. This is arguably the most dramatic early demonstration of the advanced cognitive abilities and technological capabilities of AMHs, but one that could leave little material imprint in the archaeological record beyond the evidence that colonization occurred

    Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum

    Get PDF
    Key message In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. Abstract The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Colocalization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50 % of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species

    Coherent THz Measurements at the Metrology Light Source

    Get PDF
    The Metrology Light Source MLS [1] is the first storage ring optimized for THz generation [2]. It applies a bunch shortening mode, based on a flexible momentum compaction factor optics. The short bunches emit coherent THz radiation. We report on measured THz signals as a function of different machine parameters. Two type of measurements are presented in this paper. The first part presents THz bursting thresholds for a variety of ring parameters compared with theoretical predictions and similar results achieved at BESSY II. The second part discusses an example of a special machine tuning, where the coherent THz signal suddenly and unexpectedly vanishes. Some measurements are shown to demonstrate this effect, a physical explanation is missing
    corecore