25 research outputs found

    Insights into replicative senescence of human testicular peritubular cells

    Get PDF
    There is evidence for an age-related decline in male reproductive functions, yet how the human testis may age is not understood. Human testicular peritubular cells (HTPCs) transport sperm, contribute to the spermatogonial stem cell (SSC) niche and immune surveillance, and can be isolated and studied in vitro. Consequences of replicative senescence of HTPCs were evaluated to gain partial insights into human testicular aging. To this end, early and advanced HTPC passages, in which replicative senescence was indicated by increased cell size, altered nuclear morphology, enhanced beta-galactosidase activity, telomere attrition and reduced mitochondrial DNA (mtDNA), were compared. These alterations are typical for senescent cells, in general. To examine HTPC-specific changes, focused ion beam scanning electron microscopy (FIB/SEM) tomography was employed, which revealed a reduced mitochondrial network and an increased lysosome population. The results coincide with the data of a parallel proteomic analysis and indicate deranged proteostasis. The mRNA levels of typical contractility markers and growth factors, important for the SSC niche, were not significantly altered. A secretome analysis identified, however, elevated levels of macrophage migration inhibitory factor (MIF) and dipeptidyl peptidase 4 (DPP4), which may play a role in spermatogenesis. Testicular DPP4 may further represent a possible drug target

    Ca2+ Signaling and IL-8 Secretion in Human Testicular Peritubular Cells Involve the Cation Channel TRPV2

    Get PDF
    Peritubular cells are part of the wall of seminiferous tubules in the human testis and their contractile abilities are important for sperm transport. In addition, they have immunological roles. A proteomic analysis of isolated human testicular peritubular cells (HTPCs) revealed expression of the transient receptor potential channel subfamily V member 2 (TRPV2). This cation channel is linked to mechano-sensation and to immunological processes and inflammation in other organs. We verified expression of TRPV2 in peritubular cells in human sections by immunohistochemistry. It was also found in other testicular cells, including Sertoli cells and interstitial cells. In cultured HTPCs, application of cannabidiol (CBD), a known TRPV2 agonist, acutely induced a transient increase in intracellular Ca2+ levels. These Ca2+ transients could be blocked both by ruthenium red, an unspecific Ca2+ channel blocker, and tranilast (TRA), an antagonist of TRPV2, and were also abolished when extracellular Ca2+ was removed. Taken together this indicates functional TRPV2 channels in peritubular cells. When applied for 24 to 48 h, CBD induced expression of proinflammatory factors. In particular, mRNA and secreted protein levels of the proinflammatory chemokine interleukin-8 (IL-8/CXCL8) were elevated. Via its known roles as a major mediator of the inflammatory response and as an angiogenic factor, this chemokine may play a role in testicular physiology and pathology

    Exploring human testicular peritubular cells: Identification of secretory products and regulation by tumor necrosis factor-α

    Get PDF
    Testicular peritubular cells are myofibroblastic cells, which represent the major cellular components of the wall of the seminiferous tubules. In men their phenotypic characteristics, including possible secretory activity and regulation, are not well known, in neither normal nor pathologically altered testes. Especially in testes of men with impaired spermatogenesis, the cytoarchitecture of the tubular wall is frequently remodeled and presents fibrotic thickening, increased innervation, and infiltration by macrophages and mast cells. The latter are two sources of TNF-α. The purpose of our study was to explore human testicular peritubular cells and mechanisms of their regulation. To this end we primarily studied cultured human testicular peritubular cells (HTPCs), isolated from adult human testes. Having established that HTPCs express TNF-α receptors 1 and 2 and respond to recombinant human TNF-α by a rapid phosphorylation of ERK1/2, we used complementary approaches, including gene array/RT-PCR studies, Western blotting/ immunocytochemistry, and ELISA techniques to study phenotypic characteristics of HTPCs and actions of TNFα. We found that HTPCs express the nerve growth factor gene and TNF-α-stimulated mRNA levels and secretion of nerve growth factor in a dose- and time-dependent manner. Similarly, monocyte chemoattractant protein-1 was identified as a product of HTPCs, which was regulated by TNF-α in a concentration- and time-dependent manner. TNF-α furthermore strongly enhanced expression and/or synthesis of other inflammatory molecules, namely IL-6 and cyclooxygenase-2. Active cyclooxygenase-2 is indicated by increased prostaglandin D2 levels. In addition, intercellular adhesion molecule-1, which was not detected at protein level in the absence of TNF-α, was induced upon TNF-α stimulation. In conclusion, these results provide novel insights into the nature of human peritubular cells, which are able to secrete potent signaling molecules and are regulated by TNF-α. These results also hint to an as-yet-unknown role of peritubular cells in normal human testis and involvement in the pathomechanisms associated with impaired spermatogenesis in men. Copyright © 2008 by The Endocrine Society.Fil: Schell, Christoph. Ludwig Maximilians Universitat; AlemaniaFil: Albrecht, Martín. Ludwig Maximilians Universitat; AlemaniaFil: Mayer, Christine. Ludwig Maximilians Universitat; AlemaniaFil: Ullrich Schwarzer, J.. Academic Teaching Hospital Freising; AlemaniaFil: Frungieri, Monica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mayerhofer, Artur. Ludwig Maximilians Universitat; Alemani

    Secretome Analysis of Testicular Peritubular Cells: A Window into the Human Testicular Microenvironment and the Spermatogonial Stem Cell Niche in Man

    No full text
    Spermatogonial stem cells (SSCs) are vital for lifelong spermatogenesis in man. In their niches, a special growth factor milieu and structural support by surrounding cells are thought to ensure their maintenance. In man, the cells of the wall of seminiferous tubules, human testicular peritubular cells (HTPCs), are considered to contribute to this microenvironment and the overall testicular microenvironment via secreted proteins. Therefore, the secretome of cultured HTPCs from five individual men was analyzed by LC-MS/MS. Quantification and comparison to the proteome of HTPC lysates revealed 263 out of 660 identified secretome proteins to be at least 5-fold enriched in the culture media. To obtain additional evidence for secretion, signal peptide and gene ontology (GO) enrichment analyses were applied. The latter revealedbesides extracellular matrix (ECM) componentsa significant over-representation of chemokines and growth factors acting in signaling pathways that appear critical for SSC maintenance. Immunohistochemistry, performed with human testicular sections, depicted expression of selected proteins in vivo. The significant enrichment of proteins related to cell adhesion and migration may indicate their involvement in SSC regulation. Our data strongly support the hypothesis of a crucial role of HTPCs in the composition of SSC niches in man

    ATP-mediated Events in Peritubular Cells Contribute to Sterile Testicular Inflammation

    Get PDF
    Abstract Peritubular myoid cells, which form the walls of seminiferous tubules in the testis, are functionally unexplored. While they transport sperm and contribute to the spermatogonial stem cell niche, specifically their emerging role in the immune surveillance of the testis and in male infertility remains to be studied. Recently, cytokine production and activation of Toll-like receptors (TLRs) were uncovered in cultured peritubular cells. We now show that human peritubular cells express purinergic receptors P2RX4 and P2RX7, which are functionally linked to TLRs, with P2RX4 being the prevalent ATP-gated ion channel. Subsequent ATP treatment of cultured peritubular cells resulted in up-regulated (pro-)inflammatory cytokine expression and secretion, while characteristic peritubular proteins, that is smooth muscle cell markers and extracellular matrix molecules, decreased. These findings indicate that extracellular ATP may act as danger molecule on peritubular cells, able to promote inflammatory responses in the testicular environment

    Prostaglandin E 2 (PGE 2 ) is a testicular peritubular cell-derived factor involved in human testicular homeostasis

    No full text
    In man, blockage of prostaglandin (PG)-production e.g. by non-steroidal anti-inflammatory drug (NSAIDs) may have negative testicular side effects, implying beneficial actions of PGs in the testis. We examined human testicular samples and isolated human testicular peritubular cells (HTPCs) to explore sites of PG-synthesis and targets. HTPCs express cyclooxygenase 1 (COX1) and secrete PGE 2 . Receptors (EP1, 2, 4) were specifically identified in peritubular cells. In HTPCs PGE 2 significantly increased mRNA levels of the contractility protein calponin, but did not induce contractions. PGE 2 , as well as EP1 and EP4 receptor agonists, significantly increased glia cell line derived neurotrophic factor (GDNF) mRNA and/or protein levels. Importantly, the NSAID ibuprofen reduced PGE 2 and this action also lowered SMA and calponin mRNA levels and levels of secreted GDNF protein. The results reveal an unknown PGE 2 system in the human testis, in involving peritubular cells, which may be prone to interference by NSAIDs.Fil: Rey Ares, Veronica. Ludwig Maximilians Universitat; AlemaniaFil: Rossi, Soledad Paola. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Dietrich, Kim Gwendolyn. Ludwig Maximilians Universitat; AlemaniaFil: Köhn, Frank Michael. Ludwig Maximilians Universitat; AlemaniaFil: Ullrich Schwarzer, J. Andrologicum; Múnich, Alemania; AlemaniaFil: Welter, Hared. Ludwig Maximilians Universitat; AlemaniaFil: Frungieri, Monica Beatriz. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mayerhofer, Artur. Ludwig Maximilians Universitat; Alemani
    corecore