2,313 research outputs found

    Anisotropic electron g-factor in quantum dots with spin-orbit interaction

    Full text link
    g-factor tuning of electrons in quantum dots is studied as function of in-plane and perpendicular magnetic fields for different confinements. Rashba and Dresselhaus effects are considered, and comparison is made between wide- and narrow-gap materials. The interplay between magnetic fields and intrinsic spin-orbit coupling is analyzed, with two distinct phases found in the spectrum for GaAs in perpendicular field. The anisotropy of the g-factor is reported, and good agreement with available experimental findings is obtained.Comment: 5 pages, 4 figs. (higher resol. figs. under request

    Biogeographic Barriers in the Andes: Is the Amotape—Huancabamba Zone a Dispersal Barrier for Dry Forest Plants?

    Get PDF
    This is the final version of the article. Available from Missouri Botanical Garden Press via the DOI in this record.We investigate whether the Amotape—Huancabamba zone in the Andes acts as a barrier or corridor for plant species migration. We test this hypothesis based on data on trees, shrubs, and herbs collected in dry inter-Andean valleys (DIAVs) of Ecuador. We found that 72% of the species cross the Amotape—Huancabamba zone in a north—south direction and 13% of the species cross the Andes in an east—west direction. Southern DIAVs concentrate the highest numbers of endemic species. At the regional level we found that 43% of the species are exclusively Andean, while the remaining 57% are found in the Pacific lowlands, the Caribbean, and Mesoamerica. These results showing many species crossing the Amotape—Huancabamba zone in a north—south direction and also frequently found in neighboring lowland and highland ecosystems suggest that the Amotape—Huancabamba zone acts as a corridor for species migration of dry inter-Andean flora.This research was funded by the SENESCYT scholarship “Convocatoria 2011,” the Oticon Foundation, Pontificia Universidad Catolica del Ecuador, and SYNTHESYS research visiting grant 201

    La situación de las mujeres indígenas en México

    Get PDF
    Después de cinco años de lucha, México aprobó la Legislación Indígena. Sin embargo, ésta no cumple con los requisitos mínimos a los que aspiraban las comunidades indígenas, la comunidad de los derechos humanos y los juristas progresistas. En realidad, esta legislación es un grave retroceso, ya que objetivisa a las comunidades indígenas, las despoja de su condición de sujetos de derecho y las convierte en objetos de protección

    Dynamics of two interacting particles in classical billiards

    Full text link
    The problem of two interacting particles moving in a d-dimensional billiard is considered here. A suitable coordinate transformation leads to the problem of a particle in an unconventional hyperbilliard. A dynamical map can be readily constructed for this general system, which greatly simplifies calculations. As a particular example, we consider two identical particles interacting through a screened Coulomb potential in a one-dimensional billiard. We find that the screening plays an important role in the dynamical behavior of the system and only in the limit of vanishing screening length can the particles be considered as bouncing balls. For more general screening and energy values, the system presents strong non-integrability with resonant islands of stability.Comment: REVTEX manuscript, 4 figures (1 ps + 3 gif, Postscript versions available upon request). Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.htm

    Dynamical magnetic anisotropy and quantum phase transitions in a vibrating spin-1 molecular junction

    Full text link
    We study the electronic transport through a spin-1 molecule in which mechanical stretching produces a magnetic anisotropy. In this type of device, a vibron mode along the stretching axis will couple naturally to the molecular spin. We consider a single molecular vibrational mode and find that the electron-vibron interaction induces an effective correction to the magnetic anisotropy that shifts the ground state of the device toward a non-Fermi liquid phase. A transition into a Fermi liquid phase could then be achieved, by means of mechanical stretching, passing through an underscreened spin-1 Kondo regime. We present numerical renormalization group results for the differential conductance, the spectral density, and the magnetic susceptibility across the transition.Comment: 7 pages, 7 figure

    Enhancement of the Kondo effect through Rashba spin-orbit interactions

    Full text link
    We analyze the physics of a one-orbital Anderson impurity model in a two-dimensional electron gas in the presence of Rashba spin-orbit (RSO) interactions in the Kondo regime. The spin SU(2) symmetry breaking results in an effective two-band electron gas coupled to the impurity. The Kondo regime is obtained by a Schrieffer-Wolff transformation revealing the existence of a parity breaking term with the form of the Dzyaloshinsky-Moriya (DM) interaction. The DM term vanishes at the particle-hole symmetric point of the system, but it has important effects otherwise. Performing a renormalization group (RG) analysis we find that the model describes a two-channel Kondo system with ferro- and anti-ferromagnetic couplings. Furthermore, the DM term renormalizes the antiferromagnetic Kondo coupling producing an exponential enhancement of the Kondo temperature. We suggest that these effects can be observed in semiconducting systems, as well as in graphene and topological insulators.Comment: 4 pages, 1 figure. Final published versio
    corecore