3,801 research outputs found
The Necessary Right of Choice for Physician-Assisted Suicide
Research-based paper on the importance of the right for terminally ill patients facing a painful death to be able to choose how they end their lif
NASA's Earth Science Data Systems Standards Process Experiences
NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards
Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices
Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3
microns) from the gas phase interstellar medium have long been attributed to
polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the
Milky Way's carbon reservoir is locked in PAH molecules, which makes their
characterization integral to our understanding of astrochemistry. In molecular
clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs
are expected to be frozen in the icy mantles of dust grains where they should
reveal themselves through infrared absorption. To facilitate the search for
frozen interstellar PAHs, laboratory experiments were conducted to determine
the positions and strengths of the bands of pyrene mixed with H2O and D2O ices.
The D2O mixtures are used to measure pyrene bands that are masked by the strong
bands of H2O, leading to the first laboratory determination of the band
strength for the CH stretching mode of pyrene in water ice near 3.25 microns.
Our infrared band strengths were normalized to experimentally determined
ultraviolet band strengths, and we find that they are generally ~50% larger
than those reported by Bouwman et al. based on theoretical strengths. These
improved band strengths were used to reexamine YSO spectra published by Boogert
et al. to estimate the contribution of frozen PAHs to absorption in the 5-8
micron spectral region, taking into account the strength of the 3.25 micron CH
stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the
cosmic carbon budget, and account for 2%-9% of the unidentified absorption in
the 5-8 micron region.Comment: Accepted for publication in ApJ on 14 Feb 201
Medium-separation binaries do not affect the first steps of planet formation
The first steps of planet formation are marked by the growth and
crystallization of sub-micrometer-sized dust grains accompanied by dust
settling toward the disk midplane. In this paper we explore whether the first
steps of planet formation are affected by the presence of medium-separation
stellar companions. We selected two large samples of disks around single and
binary T Tauri stars in Taurus that are thought to have only a modest age
spread of a few Myr. The companions of our binary sample are at projected
separations between 10 and 450 AU with masses down to about 0.1 solar masses.
We used the strength and shape of the 10 micron silicate emission feature as a
proxy for grain growth and for crystallization respectively. The degree of dust
settling was evaluated from the ratio of fluxes at two different mid-infrared
wavelengths. We find no statistically significant difference between the
distribution of 10 micron silicate emission features from single and binary
systems. In addition, the distribution of disk flaring is indistinguishable
between the single and binary system samples. These results show that the first
steps of planet formation are not affected by the presence of a companion at
tens of AU.Comment: To appear in the Astrophysical Journa
OWL-POLAR : semantic policies for agent reasoning
The original publication is available at www.springerlink.comPostprin
Scaling K2. I. Revised Parameters for 222,088 K2 Stars and a K2 Planet Radius Valley at 1.9 R_⊕
Previous measurements of stellar properties for K2 stars in the Ecliptic Plane Input Catalog largely relied on photometry and proper motion measurements, with some added information from available spectra and parallaxes. Combining Gaia DR2 distances with spectroscopic measurements of effective temperatures, surface gravities, and metallicities from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) DR5, we computed updated stellar radii and masses for 26,838 K2 stars. For 195,250 targets without a LAMOST spectrum, we derived stellar parameters using random forest regression on photometric colors trained on the LAMOST sample. In total, we measured spectral types, effective temperatures, surface gravities, metallicities, radii, and masses for 222,088 A, F, G, K, and M-type K2 stars. With these new stellar radii, we performed a simple reanalysis of 299 confirmed and 517 candidate K2 planet radii from Campaigns 1–13, elucidating a distinct planet radius valley around 1.9 R_⊕, a feature thus far only conclusively identified with Kepler planets, and tentatively identified with K2 planets. These updated stellar parameters are a crucial step in the process toward computing K2 planet occurrence rates
Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS
Actinic flux, as well as aerosol chemical and optical properties, were measured aboard the NASA DC-8 aircraft during the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) mission in Spring and Summer 2008. These measurements were used in a radiative transfer code to retrieve spectral (350-550 nm) aerosol single scattering albedo (SSA) for biomass burning plumes encountered on 17 April and 29 June. Retrieved SSA values were subsequently used to calculate the absorption Angstrom exponent (AAE) over the 350-500 nm range. Both plumes exhibited enhanced spectral absorption with AAE values that exceeded 1 (6.78 ± 0.38 for 17 April and 3.34 ± 0.11 for 29 June). This enhanced absorption was primarily due to organic aerosol (OA) which contributed significantly to total absorption at all wavelengths for both 17 April (57.7%) and 29 June (56.2%). OA contributions to absorption were greater at UV wavelengths than at visible wavelengths for both cases. Differences in AAE values between the two cases were attributed to differences in plume age and thus to differences in the ratio of OA and black carbon (BC) concentrations. However, notable differences between AAE values calculated for the OA (AAEOA) for 17 April (11.15 ± 0.59) and 29 June (4.94 ± 0.19) suggested differences in the plume AAE values might also be due to differences in organic aerosol composition. The 17 April OA was much more oxidized than the 29 June OA as denoted by a higher oxidation state value for 17 April (+0.16 vs. -0.32). Differences in the AAEOA, as well as the overall AAE, were thus also possibly due to oxidation of biomass burning primary organic aerosol in the 17 April plume that resulted in the formation of OA with a greater spectral-dependence of absorption. © Author(s) 2012. CC Attribution 3.0 License
Project C.O.R.E.: Coaching Opportunities with Real Experiences
Retention and graduation rates of VCU men of color (MOC) is significantly lower than white men and women of color. Due to demonstrated significant attrition occurring after the sophomore year, Project C.O.R.E. (Coaching Opportunities with Real Experiences) is proposed as a sophomore-focused program that builds upon an existing freshman course on professional development for MOC. While the first-year course introduces students to a VCU support network, Project C.O.R.E. aims to increase university retention by expanding the student support network to members of the local community. Students are paired with community coaches, predominantly VCU alumni, to enhance their career and life-skills development. This program provides continued community, guidance, and support to encourage MOC to continue on the path to graduation
- …
