125 research outputs found

    Modelling Multilateral Negotiation in Linear Logic

    Get PDF
    We show how to embed a framework for multilateral negotiation, in which a group of agents implement a sequence of deals concerning the exchange of a number of resources, into linear logic. In this model, multisets of goods, allocations of resources, preferences of agents, and deals are all modelled as formulas of linear logic. Whether or not a proposed deal is rational, given the preferences of the agents concerned, reduces to a question of provability, as does the question of whether there exists a sequence of deals leading to an allocation with certain desirable properties, such as maximising social welfare. Thus, linear logic provides a formal basis for modelling convergence properties in distributed resource allocation

    Preservation of Semantic Properties during the Aggregation of Abstract Argumentation Frameworks

    Get PDF
    An abstract argumentation framework can be used to model the argumentative stance of an agent at a high level of abstraction, by indicating for every pair of arguments that is being considered in a debate whether the first attacks the second. When modelling a group of agents engaged in a debate, we may wish to aggregate their individual argumentation frameworks to obtain a single such framework that reflects the consensus of the group. Even when agents disagree on many details, there may well be high-level agreement on important semantic properties, such as the acceptability of a given argument. Using techniques from social choice theory, we analyse under what circumstances such semantic properties agreed upon by the individual agents can be preserved under aggregation.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Modelling Combinatorial Auctions in Linear Logic

    Get PDF
    We show that linear logic can serve as an expressive framework in which to model a rich variety of combinatorial auction mechanisms. Due to its resource-sensitive nature, linear logic can easily represent bids in combinatorial auctions in which goods may be sold in multiple units, and we show how it naturally generalises several bidding languages familiar from the literature. Moreover, the winner determination problem, i.e., the problem of computing an allocation of goods to bidders producing a certain amount of revenue for the auctioneer, can be modelled as the problem of finding a proof for a particular linear logic sequent

    Epistemic Selection of Costly Alternatives: The Case of Participatory Budgeting

    Full text link
    We initiate the study of voting rules for participatory budgeting using the so-called epistemic approach, where one interprets votes as noisy reflections of some ground truth regarding the objectively best set of projects to fund. Using this approach, we first show that both the most studied rules in the literature and the most widely used rule in practice cannot be justified on epistemic grounds: they cannot be interpreted as maximum likelihood estimators, whatever assumptions we make about the accuracy of voters. Focusing then on welfare-maximising rules, we obtain both positive and negative results regarding epistemic guarantees

    07431 Executive Summary -- Computational Issues in Social Choice

    Get PDF
    Computational social choice is an interdisciplinary field of study at the interface of social choice theory and computer science, with knowledge flowing in either direction. On the one hand, computational social choice is concerned with importing concepts and procedures from social choice theory for solving questions that arise in computer science and AI application domains. This is typically the case for managing societies of autonomous agents, which calls for negotiation and voting procedures. On the other hand, computational social choice is concerned with importing notions and methods from computer science for solving questions originally stemming from social choice, for instance by providing new perspectives on the problem of manipulation and control in elections. This Dagstuhl Seminar has been devoted to the presentation of recent results and an exchange of ideas in this growing research field

    Complexity of Judgment Aggregation

    Get PDF
    We analyse the computational complexity of three problems in judgment aggregation: (1) computing a collective judgment from a profile of individual judgments (the winner determination problem); (2) deciding whether a given agent can influence the outcome of a judgment aggregation procedure in her favour by reporting insincere judgments (the strategic manipulation problem); and (3) deciding whether a given judgment aggregation scenario is guaranteed to result in a logically consistent outcome, independently from what the judgments supplied by the individuals are (the problem of the safety of the agenda). We provide results both for specific aggregation procedures (the quota rules, the premisebased procedure, and a distance-based procedure) and for classes of aggregation procedures characterised in terms of fundamental axioms

    Fair division under ordinal preferences: Computing envy-free allocations of indivisible goods

    Get PDF
    Abstract We study the problem of fairly dividing a set of goods amongst a group of agents, when those agents have preferences that are ordinal relations over alternative bundles of goods (rather than utility functions) and when our knowledge of those preferences is incomplete. The incompleteness of the preferences stems from the fact that each agent reports their preferences by means of an expression of bounded size in a compact preference representation language. Specifically, we assume that each agent only provides a ranking of individual goods (rather than of bundles). In this context, we consider the algorithmic problem of deciding whether there exists an allocation that is possibly (or necessarily) envy-free, given the incomplete preference information available, if in addition some mild economic efficiency criteria need to be satisfied. We provide simple characterisations, giving rise to simple algorithms, for some instances of the problem, and computational complexity results, establishing the intractability of the problem, for others

    Expressive Power of Weighted Propositional Formulas for Cardinal Preference Modelling

    Get PDF
    As proposed in various places, a set of propositional formulas, each associated with a numerical weight, can be used to model the preferences of an agent in combinatorial domains. If the range of possible choices can be represented by the set of possible assignments of propositional symbols to truth values, then the utility of an assignment is given by the sum of the weights of the formulas it satisfies. Our aim in this paper is twofold: (1) to establish correspondences between certain types of weighted formulas and well-known classes of utility functions (such as monotonic, concave or k-additive functions); and (2) to obtain results on the comparative succinctness of different types of weighted formulas for representing the same class of utility functions
    • …
    corecore