198 research outputs found

    Analytical and clinical validation of a blood progranulin ELISA in frontotemporal dementias

    Get PDF
    OBJECTIVES: Heterozygous mutations in the granulin (GRN) gene may result in haploinsufficiency of progranulin (PGRN), which might lead to frontotemporal dementia (FTD). In this study, we aimed to perform analytical and clinical validation of a commercial progranulin kit for clinical use. METHODS: Analytical validation parameters including assay precision, selectivity, measurement range, dilution linearity, interferences and sample stability were tested according to previously described procedures. For clinical validation, PGRN levels were measured in plasma from 32 cognitively healthy individuals, 52 confirmed GRN mutation carriers, 25 C9orf72 mutation carriers and 216 patients with different neurodegenerative diseases of which 70 were confirmed as non-mutation carriers. RESULTS: Among the analytical validation parameters, assay precision and repeatability were very stable (coefficients of variation <7 %). Spike recovery was 96 %, the measurement range was 6.25-400 μg/L and dilution linearity ranged from 1:50-1:200. Hemolysis did not interfere with progranulin levels, and these were resistant to freeze/thaw cycles and storage at different temperatures. For the clinical validation, the assay was capable of distinguishing GRN mutation carriers from controls and non-GRN mutation carriers with very good sensitivity and specificity at a cut-off of 57 μg/L (97 %, 100 %, respectively). CONCLUSIONS: In this study, we demonstrate robust analytical and diagnostic performance of this commercial progranulin kit for implementation in clinical laboratory practice. This easy-to-use test allows identification of potential GRN mutation carriers, which may guide further evaluation of the patient. This assay might also be used to evaluate the effect of novel PGRN-targeting drugs and therapies

    Neurofilament Light in Cerebrospinal Fluid is Associated With Disease Staging in European Lyme Neuroborreliosis

    Get PDF
    BACKGROUND: Drivers of differences in disease presentation and symptom duration in Lyme neuroborreliosis (LNB) are currently unknown. OBJECTIVES: We hypothesized that neurofilament light (NfL) in cerebrospinal fluid (CSF) would predict disease location and sequelae in a historic LNB cohort. DESIGN: Using a cross-sectional design and archived CSF samples from 185 patients diagnosed with LNB, we evaluated the content of NfL in the total cohort and in a subgroup of 84 patients with available clinical and paraclinical information. METHODS: Individuals were categorized according to disease location: a. Central nervous system (CNS) with stroke (N=3), b. CNS without stroke (N=11), c. Peripheral nervous system (PNS) with cranial nerve palsy (CNP) (N=40) d. PNS without CNP (N=30). Patients with hospital follow-up more than 6 months after completed antibiotic therapy were categorized as having LNB associated sequelae (N=15). RESULTS: At diagnosis concentration of NfL exceeded the upper reference level in 60% (105/185), especially among individuals above 30 years. Age-adjusted NfL was not found to be associated with symptom duration. Age-adjusted NfL was significantly higher among individuals with CNS involvement. Category a. (stroke) had significantly higher NfL concentrations in CSF compared to all other categories, category b. (CNS involvement without stroke) had significantly higher values compared to the categories of PNS involvement. We found no significant difference between the categories with PNS involvement (with or without CNP). Significantly higher NfL was found among patients with follow-up in hospital setting. CONCLUSION: Comparison of NfL concentrations between the 4 groups of LNB disease manifestations based on clinical information revealed a hierarchy of neuron damage according to disease location and suggested evolving mechanisms with accelerated injury especially when disease is complicated by stroke. Higher values of NfL among patients with need of follow-up in hospital setting suggest NfL could be useful to identify rehabilitative needs

    Screening for New Biomarkers for Subcortical Vascular Dementia and Alzheimer's Disease

    Get PDF
    BACKGROUND: Novel biomarkers are important for identifying as well as differentiating subcortical vascular dementia (SVD) and Alzheimer's disease (AD) at an early stage in the disease process. METHODS: In two independent cohorts, a multiplex immunoassay was utilized to analyze 90 proteins in cerebrospinal fluid (CSF) samples from dementia patients and patients at risk of developing dementia (mild cognitive impairment). RESULTS: The levels of several CSF proteins were increased in SVD and its incipient state, and in moderate-to-severe AD compared with the control group. In contrast, some CSF proteins were altered in AD, but not in SVD. The levels of heart-type fatty acid binding protein (H-FABP) were consistently increased in all groups with dementia but only in some of their incipient states. CONCLUSIONS: In summary, these results support the notion that SVD and AD are driven by different pathophysiological mechanisms reflected in the CSF protein profile and that H-FABP in CSF is a general marker of neurodegeneration

    Autocatalytic amplification of Alzheimer-associated Aβ42 peptide aggregation in human cerebrospinal fluid

    Get PDF
    Funder: Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation); doi: https://doi.org/10.13039/501100004063Funder: Alzheimerfonden; doi: https://doi.org/10.13039/501100008599Abstract: Alzheimer’s disease is linked to amyloid β (Aβ) peptide aggregation in the brain, and a detailed understanding of the molecular mechanism of Aβ aggregation may lead to improved diagnostics and therapeutics. While previous studies have been performed in pure buffer, we approach the mechanism in vivo using cerebrospinal fluid (CSF). We investigated the aggregation mechanism of Aβ42 in human CSF through kinetic experiments at several Aβ42 monomer concentrations (0.8–10 µM). The data were subjected to global kinetic analysis and found consistent with an aggregation mechanism involving secondary nucleation of monomers on the fibril surface. A mechanism only including primary nucleation was ruled out. We find that the aggregation process is composed of the same microscopic steps in CSF as in pure buffer, but the rate constant of secondary nucleation is decreased. Most importantly, the autocatalytic amplification of aggregate number through catalysis on the fibril surface is prevalent also in CSF

    Assessing the commutability of candidate reference materials for the harmonization of neurofilament light measurements in blood

    Get PDF
    OBJECTIVES: Neurofilament light chain (NfL) concentration in blood is a biomarker of neuro-axonal injury in the nervous system and there now exist several assays with high enough sensitivity to measure NfL in serum and plasma. There is a need for harmonization with the goal of creating a certified reference material (CRM) for NfL and an early step in such an effort is to determine the best matrix for the CRM. This is done in a commutability study and here the results of the first one for NfL in blood is presented. METHODS: Forty paired individual serum and plasma samples were analyzed for NfL on four different analytical platforms. Neat and differently spiked serum and plasma were evaluated for their suitability as a CRM using the difference in bias approach. RESULTS: The correlation between the different platforms with regards to measured NfL concentrations were very high (Spearman's ρ≥0.96). Samples spiked with cerebrospinal fluid (CSF) showed higher commutability compared to samples spiked with recombinant human NfL protein and serum seems to be a better choice than plasma as the matrix for a CRM. CONCLUSIONS: The results from this first commutability study on NfL in serum/plasma showed that it is feasible to create a CRM for NfL in blood and that spiking should be done using CSF rather than with recombinant human NfL protein

    Distinct cerebrospinal fluid amyloid β peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is associated with deposition of amyloid β (Aβ) in the brain, which is reflected by low concentration of the Aβ1-42 peptide in the cerebrospinal fluid (CSF). There are at least 15 additional Aβ peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of Aβ. Here, we test the hypothesis that AD is characterized by a specific CSF Aβ isoform pattern that is distinct when comparing sporadic AD (SAD) and familial AD (FAD) due to different mechanisms underlying brain amyloid pathology in the two disease groups.</p> <p>Results</p> <p>We measured Aβ isoform concentrations in CSF from 18 patients with SAD, 7 carriers of the FAD-associated presenilin 1 (<it>PSEN1</it>) A431E mutation, 17 healthy controls and 6 patients with depression using immunoprecipitation-mass spectrometry. Low CSF levels of Aβ1-42 and high levels of Aβ1-16 distinguished SAD patients and FAD mutation carriers from healthy controls and depressed patients. SAD and FAD were characterized by similar changes in Aβ1-42 and Aβ1-16, but FAD mutation carriers exhibited very low levels of Aβ1-37, Aβ1-38 and Aβ1-39.</p> <p>Conclusion</p> <p>SAD patients and <it>PSEN1 </it>A431E mutation carriers are characterized by aberrant CSF Aβ isoform patterns that hold clinically relevant diagnostic information. <it>PSEN1 </it>A431E mutation carriers exhibit low levels of Aβ1-37, Aβ1-38 and Aβ1-39; fragments that are normally produced by γ-secretase, suggesting that the <it>PSEN1 </it>A431E mutation modulates γ-secretase cleavage site preference in a disease-promoting manner.</p

    Neurofilament light oligomers in neurodegenerative diseases: quantification by homogeneous immunoassay in cerebrospinal fluid

    Get PDF
    BACKGROUND: Neurofilament light (NfL) is a widely used biomarker for neurodegeneration. NfL is prone to oligomerisation, but available assays do not reveal the exact molecular nature of the protein variant measured. The objective of this study was to develop a homogeneous ELISA capable of quantifying oligomeric NfL (oNfL) in cerebrospinal fluid (CSF). METHODS: A homogeneous ELISA, based on the same capture and detection antibody (NfL21), was developed and used to quantify oNfL in samples from patients with behavioural variant frontotemporal dementia (bvFTD, n=28), non-fluent variant primary progressive aphasia (nfvPPA, n=23), semantic variant PPA (svPPA, n=10), Alzheimer's disease (AD, n=20) and healthy controls (n=20). The nature of NfL in CSF, and the recombinant protein calibrator, was also characterised by size exclusion chromatography (SEC). RESULTS: CSF concentration of oNfL was significantly higher in nfvPPA (p<0.0001) and svPPA patients (p<0.05) compared with controls. CSF oNfL concentration was also significantly higher in nfvPPA compared with bvFTD (p<0.001) and AD (p<0.01) patients. SEC data showed a peak fraction compatible with a full-length dimer (~135 kDa) in the in-house calibrator. For CSF, the peak was found in a fraction of lower molecular weight (~53 kDa), suggesting dimerisation of NfL fragments. CONCLUSIONS: The homogeneous ELISA and SEC data suggest that most of the NfL in both the calibrator and human CSF is present as a dimer. In CSF, the dimer appears to be truncated. Further studies are needed to determine its precise molecular composition

    Establishment of reference values for plasma neurofilament light based on healthy individuals aged 5-90 years

    Get PDF
    The recent development of assays that accurately quantify neurofilament light, a neuronal cytoskeleton protein, in plasma has generated a vast literature supporting that it is a sensitive, dynamic, and robust biomarker of neuroaxonal damage. As a result, efforts are now made to introduce plasma neurofilament light into clinical routine practice, making it an easily accessible complement to its cerebrospinal fluid counterpart. An increasing literature supports the use of plasma neurofilament light in differentiating neurodegenerative diseases from their non-neurodegenerative mimics and suggests it is a valuable biomarker for the evaluation of the effect of putative disease-modifying treatments (e.g. in multiple sclerosis). More contexts of use will likely emerge over the coming years. However, to assist clinical interpretation of laboratory test values, it is crucial to establish normal reference intervals. In this study, we sought to derive reliable cut-offs by pooling quantified plasma neurofilament light in neurologically healthy participants (5-90 years) from eight cohorts. A strong relationship between age and plasma neurofilament light prompted us to define the following age-partitioned reference limits (upper 95th percentile in each age category): 5-17 years = 7 pg/mL; 18-50 years = 10 pg/mL; 51-60 years = 15 pg/mL; 61-70 years = 20 pg/mL; 70 + years = 35 pg/mL. The established reference limits across the lifespan will aid the introduction of plasma neurofilament light into clinical routine, and thereby contribute to diagnostics and disease-monitoring in neurological practice

    Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa

    Get PDF
    AbstractBackground: Neuronal damage is the morphological substrate of persisting neurological disability. Neurofilaments (Nf) are specific cytoskeletal proteins of neurons and their quantification has shown encouraging results as a biomarker for axonal injury. Methods: We aimed at comparing a widely used conventional ELISA for Nf light chain (NfL) with an electrochemiluminescence-based method (ECL assay) and a newly developed single-molecule array (Simoa) method in clinically relevant cerebrospinal fluid (CSF) and serum samples. Results: Analytical sensitivity was 0.62 pg/mL for Simoa, 15.6 pg/mL for the ECL assay, and 78.0 pg/mL for the ELISA. Correlations between paired CSF and serum samples were strongest for Simoa (r=0.88, p<0.001) and the ECL assay (r=0.78, p<0.001) and weaker for ELISA measurements (r=0.38, p=0.030). CSF NfL measurements between the platforms were highly correlated (r=1.0, p<0.001). Serum NfL levels were highly related between ECL assay and Simoa (r=0.86, p<0.001), and this was less visible between ELISA-ECL assay (r=0.41, p=0.018) and ELISA-Simoa (r=0.43, p=0.013). Multiple sclerosis (MS) patients had significantly higher serum NfL levels than controls when measured with Simoa (p=0.001) but not with the other platforms. Conclusions: We found Simoa to be more sensitive than ELISA or the ECL assay. Our results support the feasibility of quantifying NfL in serum; the results correlate with the more-established CSF NfL test. The highly sensitive Simoa technology deserves further studies in larger patient cohorts to clarify whether serum NfL could be used in the future to measure disease severity and determine prognosis or response to treatment interventions in neurological diseases
    corecore