2 research outputs found

    Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Eukaryotic striatin forms striatin-interacting phosphatase and kinase (STRIPAK) complexes that control many cellular processes including development, cellular transport, signal transduction, stem cell differentiation and cardiac functions. However, detailed knowledge of complex assembly and its roles in stress responses are currently poorly understood. Here, we discovered six striatin (StrA) interacting proteins (Sips), which form a heptameric complex in the filamentous fungus Aspergillus nidulans. The complex consists of the striatin scaffold StrA, the Mob3-type kinase coactivator SipA, the SIKE-like protein SipB, the STRIP1/2 homolog SipC, the SLMAP-related protein SipD and the catalytic and regulatory phosphatase 2A subunits SipE (PpgA), and SipF, respectively. Single and double deletions of the complex components result in loss of multicellular light-dependent fungal development, secondary metabolite production (e.g. mycotoxin Sterigmatocystin) and reduced stress responses. sipA (Mob3) deletion is epistatic to strA deletion by supressing all the defects caused by the lack of striatin. The STRIPAK complex, which is established during vegetative growth and maintained during the early hours of light and dark development, is mainly formed on the nuclear envelope in the presence of the scaffold StrA. The loss of the scaffold revealed three STRIPAK subcomplexes: (I) SipA only interacts with StrA, (II) SipB-SipD is found as a heterodimer, (III) SipC, SipE and SipF exist as a heterotrimeric complex. The STRIPAK complex is required for proper expression of the heterotrimeric VeA-VelB-LaeA complex which coordinates fungal development and secondary metabolism. Furthermore, the STRIPAK complex modulates two important MAPK pathways by promoting phosphorylation of MpkB and restricting nuclear shuttling of MpkC in the absence of stress conditions. SipB in A. nidulans is similar to human suppressor of IKK-ε(SIKE) protein which supresses antiviral responses in mammals, while velvet family proteins show strong similarity to mammalian proinflammatory NF-KB proteins. The presence of these proteins in A. nidulans further strengthens the hypothesis that mammals and fungi use similar proteins for their immune response and secondary metabolite production, respectively

    The effect of thickness and doping on the nonlinear absorption behaviour of IIIA-VIA group amorphous semiconductor thin films

    No full text
    The nonlinear optical absorption of InSe, GaSe and GaxIn1-xSe amorphous films with varying thickness and doping has been studied by open-aperture Z-scan experiment with 4 ns and 65 ps pulse durations at 1064 nm wavelength and femtosecond pump-probe spectroscopy. Our results show that the dopant and film thickness (from 20 nm to 104 nm) results in switching from saturable absorption to nonlinear absorption for equal input intensities. This behaviour is attributed to increasing localized defect states with increasing film thickness and/or dopant. The experimental curves were fitted to the theory of open aperture Gaussian beam Z-scan based on the Adomian decomposition method incorporating one photon, two photon, and free carrier absorptions and their saturations. By preparing very thin amorphous thin films the saturation threshold has been lowered significantly
    corecore