188 research outputs found
Synthesis of the Einstein-Podolsky-Rosen entanglement in a sequence of two single-mode squeezers
Synthesis of the Einstein-Podolsky-Rosen entangled state --- the primary
entangled resource in continuous-variable quantum-optical information
processing --- is a technological challenge of great importance. Here we
propose and implement a new scheme of generating this state. Two nonlinear
optical crystals, positioned back-to-back in the waist of a pump beam, function
as single-pass degenerate optical parametric amplifiers and produce single-mode
squeezed vacuum states in orthogonal polarization modes, but in the same
spatiotemporal mode. A subsequent pair of waveplates acts as a beam splitter,
entangling the two polarization modes to generate the Einstein-Podolsky-Rosen
state. This technique takes advantage of the strong nonlinearity associated
with type-I phase-matching configuration while at the same time eliminating the
need for actively stabilizing the optical phase between the two squeezers,
which typically arises if these squeezers are spatially separated. We
demonstrate our method in an experiment, preparing a 1.4 dB two-mode squeezed
state and characterizing it via two-mode homodyne tomography.Comment: 4 pages, 3 figure
Experimental quantum homodyne tomography via machine learning
Complete characterization of states and processes that occur within quantum
devices is crucial for understanding and testing their potential to outperform
classical technologies for communications and computing. However, solving this
task with current state-of-the-art techniques becomes unwieldy for large and
complex quantum systems. Here we realize and experimentally demonstrate a
method for complete characterization of a quantum harmonic oscillator based on
an artificial neural network known as the restricted Boltzmann machine. We
apply the method to optical homodyne tomography and show it to allow full
estimation of quantum states based on a smaller amount of experimental data
compared to state-of-the-art methods. We link this advantage to reduced
overfitting. Although our experiment is in the optical domain, our method
provides a way of exploring quantum resources in a broad class of large-scale
physical systems, such as superconducting circuits, atomic and molecular
ensembles, and optomechanical systems.Comment: 7+4 pages, 4+2 figure
Undoing the effect of loss on quantum entanglement
Entanglement distillation is a process via which the strength and purity of
quantum entanglement can be increased probabilistically. It is a key step in
many quantum communication and computation protocols. In particular,
entanglement distillation is a necessary component of the quantum repeater, a
device which counters the degradation of entanglement that inevitably occurs
due to losses in a communication line. Here we report an experiment on
distilling the Einstein-Podolsky-Rosen (EPR) state of light, the workhorse of
continuous-variable entanglement, using the technique of noiseless
amplification. In contrast to previous implementations, the entanglement
enhancement factor achievable by our technique is not fundamentally limited and
permits recovering an EPR state with a macroscopic level of entanglement no
matter how low the initial entanglement or how high the loss may be. In
particular, we recover the original level of entanglement after one of the EPR
modes has passed through a channel with a loss factor of 20. The level of
entanglement in our distilled state is higher than that achievable by direct
transmission of any state through a similar loss channel. This is a key
bench-marking step towards the realization of a practical continuous-variable
quantum repeater and other CV quantum protocols.Comment: 8 pages, 5 figure
Konus-Wind and Helicon-Coronas-F Observations of Solar Flares
Results of solar flare observations obtained in the Konus-Wind experiment
from November, 1994 to December, 2013 and in the Helicon Coronas-F experiment
during its operation from 2001 to 2005, are presented. For the periods
indicated Konus-Wind detected in the trigger mode 834 solar flares, and
Helicon-Coronas-F detected more than 300 solar flares.
A description of the instruments and data processing techniques are given. As
an example, the analysis of the spectral evolution of the flares
SOL2012-11-08T02:19 (M 1.7) and SOL2002-03-10T01:34 (C5.1) is made with the
Konus-Wind data and the flare SOL2003-10-26T06:11 (X1.2) is analyzed in the
2.223 MeV deuterium line with the Helicon-Coronas-F data.Comment: Published version. A list of the Konus-Wind solar flare triggers and
figures of their time profiles are available at
http://www.ioffe.ru/LEA/Solar
The second Konus-Wind catalog of short gamma-ray bursts
In this catalog, we present the results of a systematic study of 295 short
gamma-ray bursts (GRBs) detected by Konus-Wind (KW) from 1994 to 2010. From the
temporal and spectral analyses of the sample, we provide the burst durations,
the spectral lags, the results of spectral fits with three model functions, the
total energy fluences and the peak energy fluxes of the bursts. We discuss
evidence found for an additional power-law spectral component and the presence
of extended emission in a fraction of the KW short GRBs. Finally, we consider
the results obtained in the context of the Type I (merger-origin) / Type II
(collapsar-origin) classifications.Comment: Accepted to the Astrophysical Journal Supplement Series (7 Figures, 8
Tables
Fast spectral variability of GRBs with known redshifts
The fast spectral variability of gamma-ray bursts (GRBs) with known redshifts is investigated using the Konus-Wind experiment data in time scale up to 2ms. Tracks of these GRBs in the luminosity-peak energy plane (Liso,EP ) in the rest-frame are obtained. The distribution of maximum values of an instantaneous luminosity in the GRB’s rest frame Liso is derived for such GRBs depending on the peak energy EP
Numerical adiabatic potentials of orthorhombic Jahn-Teller effects retrieved from ultrasound attenuation experiments. Application to the SrF2:Cr crystal
A methodology is worked out to retrieve the numerical values of all the main
parameters of the six-dimensional adiabatic potential energy surface (APES) of
a polyatomic system with a quadratic T-term Jahn-Teller effect (JTE) from
ultrasound experiments. The method is based on a verified assumption that
ultrasound attenuation and speed encounter anomalies when the direction of
propa- gation and polarization of its wave of strain coincides with the
characteristic directions of symmetry breaking in the JTE. For the SrF2:Cr
crystal, employed as a basic example, we observed anomaly peaks in the
temperature dependence of attenuation of ultrasound at frequencies of 50-160
MHz in the temperature interval of 40-60 K for the wave propagating along the
[110] direction, for both the longitudinal and shear modes, the latter with two
polarizations along the [001] and [110] axes, respectively. We show that these
anomalies are due to the ultrasound relaxation by the system of non-interacting
Cr2+ JT centers with orthorhombic local distortions. The interpretation of the
ex- perimental findings is based on the T2g (eg +t2g) JTE problem including the
linear and quadratic terms of vibronic interactions in the Hamiltonian and the
same-symmetry modes reduced to one interaction mode. Combining the experimental
results with a theoretical analysis we show that on the complicated
six-dimensional APES of this system with three tetragonal, four trigonal, and
six orthorhombic extrema points, the latter are global minima, while the former
are saddle points, and we estimate numerically all the main parameters of this
surface, including the linear and quadratic vibronic coupling constants, the
primary force constants, the coordinates of all the extrema points and their
energies, the energy barrier between the orthorhombic minima, and the tunneling
splitting of the ground vibrational states.Comment: 8 pages, 3 figure
The optical identifcation of events with poorly defined locations: The case of the Fermi GBM GRB140801A
We report the early discovery of the optical afterglow of gamma-ray burst
(GRB) 140801A in the 137 deg 3- error-box of the Fermi Gamma-ray
Burst Monitor (GBM). MASTER is the only observatory that automatically react to
all Fermi alerts. GRB 140801A is one of the few GRBs whose optical counterpart
was discovered solely from its GBM localization. The optical afterglow of GRB
140801A was found by MASTER Global Robotic Net 53 sec after receiving the
alert, making it the fastest optical detection of a GRB from a GBM error-box.
Spectroscopy obtained with the 10.4-m Gran Telescopio Canarias and the 6-m BTA
of SAO RAS reveals a redshift of . We performed optical and
near-infrared photometry of GRB 140801A using different telescopes with
apertures ranging from 0.4-m to 10.4-m. GRB 140801A is a typical burst in many
ways. The rest-frame bolometric isotropic energy release and peak energy of the
burst is erg and
keV, respectively, which is consistent with the
Amati relation. The absence of a jet break in the optical light curve provides
a lower limit on the half-opening angle of the jet deg. The
observed is consistent with the limit derived from the
Ghirlanda relation. The joint Fermi GBM and Konus-Wind analysis shows that GRB
140801A could belong to the class of intermediate duration. The rapid detection
of the optical counterpart of GRB 140801A is especially important regarding the
upcoming experiments with large coordinate error-box areas.Comment: in press MNRAS, 201
- …