15 research outputs found

    Insight into Functional Membrane Proteins by Solution NMR: The Human Bcl-2 Protein—A Promising Cancer Drug Target

    No full text
    Evasion from programmed cell death (apoptosis) is the main hallmark of cancer and a major cause of resistance to therapy. Many tumors simply ensure survival by over-expressing the cell-protecting (anti-apoptotic) Bcl-2 membrane protein involved in apoptotic regulation. However, the molecular mechanism by which Bcl-2 protein in its mitochondrial outer membrane location protects cells remains elusive due to the absence of structural insight; and current strategies to therapeutically interfere with these Bcl-2 sensitive cancers are limited. Here, we present an NMR-based approach to enable structural insight into Bcl-2 function; an approach also ideal as a fragment-based drug discovery platform for further identification and development of promising molecular Bcl-2 inhibitors. By using solution NMR spectroscopy on fully functional intact human Bcl-2 protein in a membrane-mimicking micellar environment, and constructs with specific functions remaining, we present a strategy for structure determination and specific drug screening of functional subunits of the Bcl-2 protein as targets. Using 19F NMR and a specific fragment library (Bionet) with fluorinated compounds we can successfully identify various binders and validate our strategy in the hunt for novel Bcl-2 selective cancer drug strategies to treat currently incurable Bcl-2 sensitive tumors

    Domain-specific insight into the recognition of BH3-death motifs by the pro-survival Bcl-2 protein

    No full text
    Programmed mammalian cell death (apoptosis) is an essential mechanism in life that tightly regulates embryogenesis and removal of dysfunctional cells. In its intrinsic (mitochondrial) pathway, opposing members of the Bcl-2 (B cell lymphoma 2) protein family meet at the mitochondrial outer membrane (MOM) to control its integrity. Any imbalance can cause disorders, with upregulation of the cell-guarding antiapoptotic Bcl-2 protein itself being common in many, often incurable, cancers. Normally, the Bcl-2 protein itself is embedded in the MOM where it sequesters cell-killing apoptotic proteins such as Bax (Bcl-2-associated X protein) that would otherwise perforate the MOM and subsequently cause cell death. However, the molecular basis of Bcl-2’s ability to recognize those apoptotic proteins via their common BH3 death motifs remains elusive due to the lack of structural insight. By employing nuclear magnetic resonance on fully functional human Bcl-2 protein in membrane-mimicking micelles, we identified glycine residues across all functional domains of the Bcl-2 protein and could monitor their residue-specific individual response upon the presence of a Bax-derived 36aa long BH3 domain. The observed chemical shift perturbations allowed us to determine the response and individual affinity of each glycine residue and provide an overall picture of the individual roles by which Bcl-2’s functional domains engage in recognizing and inhibiting apoptotic proteins via their prominent BH3 motifs. This way, we provide a unique residue- and domain-specific insight into the molecular functioning of Bcl-2 at the membrane level, an insight also opening up for interfering with this cell-protecting mechanism in cancer therapy

    Milligram scale expression, refolding, and purification of Bombyx mori cocoonase using a recombinant E. coli system

    No full text
    Silk is one of the most versatile biomaterials with signature properties of outstanding mechanical strength and flexibility. A potential avenue for developing more environmentally friendly silk production is to make use of the silk moth (Bombyx mori) cocoonase, this will at the same time increase the possibility for using the byproduct, sericin, as a raw material for other applications. Cocoonase is a serine protease utilized by the silk moth to soften the cocoon to enable its escape after completed metamorphosis. Cocoonase selectively degrades the glue protein of the cocoon, sericin, without affecting the silk-fiber made of the protein fibroin. Cocoonase can be recombinantly produced in E. coli, however, it is exclusively found as insoluble inclusion bodies. To solve this problem and to be able to utilize the benefits associated with an E. coli based expression system, we have developed a protocol that enables the production of soluble and functional protease in the milligram/liter scale. The core of the protocol is refolding of the protein in a buffer with a redox potential that is optimized for formation of native and intramolecular di-sulfide bridges. The redox potential was balanced with defined concentrations of reduced and oxidized glutathione. This E. coli based production protocol will, in addition to structure determination, also enable modification of cocoonase both in terms of catalytic function and stability. These factors will be valuable components in the development of alternate silk production methodology

    Insight into Functional Membrane Proteins by Solution NMR : The Human Bcl-2 Protein - A Promising Cancer Drug Target

    No full text
    Evasion from programmed cell death (apoptosis) is the main hallmark of cancer and a major cause of resistance to therapy. Many tumors simply ensure survival by over-expressing the cell-protecting (anti-apoptotic) Bcl-2 membrane protein involved in apoptotic regulation. However, the molecular mechanism by which Bcl-2 protein in its mitochondrial outer membrane location protects cells remains elusive due to the absence of structural insight; and current strategies to therapeutically interfere with these Bcl-2 sensitive cancers are limited. Here, we present an NMR-based approach to enable structural insight into Bcl-2 function; an approach also ideal as a fragment-based drug discovery platform for further identification and development of promising molecular Bcl-2 inhibitors. By using solution NMR spectroscopy on fully functional intact human Bcl-2 protein in a membrane-mimicking micellar environment, and constructs with specific functions remaining, we present a strategy for structure determination and specific drug screening of functional subunits of the Bcl-2 protein as targets. Using 19F NMR and a specific fragment library (Bionet) with fluorinated compounds we can successfully identify various binders and validate our strategy in the hunt for novel Bcl-2 selective cancer drug strategies to treat currently incurable Bcl-2 sensitive tumors

    Backbone chemical shift assignment and dynamics of the N-terminal domain of ClpB from Francisella tularensis type VI secretion system

    No full text
    The Hsp100 family member ClpB is a protein disaggregase which solubilizes and reactivates stress-induced protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. In the pathogenic bacterium Francisella tularensis, ClpB is involved in type VI secretion system (T6SS) disassembly through depolymerization of the IglA-IglB sheath. This leads to recycling and reassembly of T6SS components and this process is essential for the virulence of the bacterium. Here we report the backbone chemical shift assignments and 15N relaxation-based backbone dynamics of the N-terminal substrate-binding domain of ClpB (1-156)

    Creation of distinctive Bax-lipid complexes at mitochondrial membrane surfaces drives pore formation to initiate apoptosis

    No full text
    Apotosis is an essential process tightly regulated by the Bcl-2 protein family where proapoptotic Bax triggers cell death by perforating the mitochondrial outer membrane. Although intensively studied, the molecular mechanism by which these proteins create apoptotic pores remains elusive. Here, we show that Bax creates pores by extracting lipids from outer mitochondrial membrane mimics by formation of Bax/lipid clusters that are deposited on the membrane surface. Time-resolved neutron reflectometry and Fourier transform infrared spectroscopy revealed two kinetically distinct phases in the pore formation process, both of whichwere critically dependent on cardiolipin levels. The initially fast adsorption of Bax on the mitochondrial membrane surface is followed by a slower formation of pores and Bax-lipid clusters on the membrane surface. Our findings provide a robust molecular understanding of mitochondrial membrane perforation by cell-killing Bax protein and illuminate the initial phases of programmed cellular death

    Data on optimization of expression and purification of AIMP2-DX2 protein in Escherichia coli

    No full text
    AIMP2-DX2 is a splicing variant of AIMP2 protein which has been implicated in human lung cancer and chemoresistance of ovarian cancer (J.W. Choi, D.G. Kim, A.E. Lee, H.R. Kim, J.Y. Lee, N.H. Kwon, et al., 2011; J.W. Choi, J.W. Lee, J.K. Kim, H.K. Jeon, J.J. Choi, D.G. Kim, et al., 2012) [1,2]. We have shown, here, the data for the expression of AIMP2-DX2 protein in Escherichia coli and optimization of the critical steps in purification of AIMP2-DX2. The data described here has been successfully used to get a maximum yield of highly pure AIMP2-DX2 for subsequent characterization of its biophysical property in: “Purification and biophysical characterization of the AIMP2-DX2 protein” (R. Jha, H.Y. Cho, A. Ul Mushtaq, K. Lee, D.G. Kim, S. Kim, et al., 2017) [3]

    Data on optimization of expression and purification of AIMP2-DX2 protein in Escherichia coli

    No full text
    AIMP2-DX2 is a splicing variant of AIMP2 protein which has been implicated in human lung cancer and chemoresistance of ovarian cancer (J.W. Choi, D.G. Kim, A.E. Lee, H.R. Kim, J.Y. Lee, N.H. Kwon, et al., 2011; J.W. Choi, J.W. Lee, J.K. Kim, H.K. Jeon, J.J. Choi, D.G. Kim, et al., 2012) [1,2]. We have shown, here, the data for the expression of AIMP2-DX2 protein in Escherichia coli and optimization of the critical steps in purification of AIMP2-DX2. The data described here has been successfully used to get a maximum yield of highly pure AIMP2-DX2 for subsequent characterization of its biophysical property in: “Purification and biophysical characterization of the AIMP2-DX2 protein” (R. Jha, H.Y. Cho, A. Ul Mushtaq, K. Lee, D.G. Kim, S. Kim, et al., 2017) [3]

    Neutron reflectometry and NMR spectroscopy of full-length Bcl-2 protein reveal its membrane localization and conformation

    No full text
    B-cell lymphoma 2 (Bcl-2) proteins are the main regulators of mitochondrial apoptosis. Anti-apoptotic Bcl-2 proteins possess a hydrophobic tail-anchor enabling them to translocate to their target membrane and to shift into an active conformation where they inhibit pro-apoptotic Bcl-2 proteins to ensure cell survival. To address the unknown molecular basis of their cell-protecting functionality, we used intact human Bcl-2 protein natively residing at the mitochondrial outer membrane and applied neutron reflectometry and NMR spectroscopy. Here we show that the active full-length protein is entirely buried into its target membrane except for the regulatory flexible loop domain (FLD), which stretches into the aqueous exterior. The membrane location of Bcl-2 and its conformational state seems to be important for its cell-protecting activity, often infamously upregulated in cancers. Most likely, this situation enables the Bcl-2 protein to sequester pro-apoptotic Bcl-2 proteins at the membrane level while sensing cytosolic regulative signals via its FLD region

    Insights into the evolution of enzymatic specificity and catalysis: From Asgard archaea to human adenylate kinases

    No full text
    Enzymatic catalysis is critically dependent on selectivity, active site architecture, and dynamics. To contribute insights into the interplay of these properties, we established an approach with NMR, crystallography, and MD simulations focused on the ubiquitous phosphotransferase adenylate kinase (AK) isolated from Odinarchaeota (OdinAK). Odinarchaeota belongs to the Asgard archaeal phylum that is believed to be the closest known ancestor to eukaryotes. We show that OdinAK is a hyperthermophilic trimer that, contrary to other AK family members, can use all NTPs for its phosphorylation reaction. Crystallographic structures of OdinAK-NTP complexes revealed a universal NTP-binding motif, while 19^{19}F NMR experiments uncovered a conserved and rate-limiting dynamic signature. As a consequence of trimerization, the active site of OdinAK was found to be lacking a critical catalytic residue and is therefore considered to be “atypical.” On the basis of discovered relationships with human monomeric homologs, our findings are discussed in terms of evolution of enzymatic substrate specificity and cold adaptation
    corecore