17 research outputs found

    Microbial carbon turnover in the detritusphere

    Get PDF
    Microbial decomposition processes at the soil-litter interface involves a complex food web including fungi, bacteria, and archaea that compete for the organic matter. During the decomposition, the nutrient quantity and quality changes as well as the microbial community composition. It is still a challenge to identify and quantify active microbial species in concurrency with their absolute contribution to the carbon (C) turnover. In the frame of the DFG-Project (FOR 918) “Carbon flow in belowground food webs assessed by isotope tracers“ we determined the C flow and turnover of differently aged maize litter in bacteria and fungi of an arable soil. A microcosm experiment was set up with C-13-labeled and unlabeled maize litter on top of soil cores. A reciprocal transplantation of the labeled litter on soil cores with unlabeled litter allowed us to follow the C flow into different microbial groups at the early (0-4d), intermediate (4-12d) and late stage (28-36d) of litter decomposition. We analyzed microbial CO2 respiration, microbial biomass and PLFA pattern in the top 3 mm of the soil cores. To identify and quantify microbial species feeding on the substrate and to assess their degree of C-13 assimilation, DNA stable isotope probing followed by gene-targeted sequencing of bacteria and fungi are currently performed on the soil metagenome. We expected specific microbial communities (copio- and oligotrophic) involved in maize litter decomposition at the different stages of litter decay. During the initial days of the experiment, up to 17% of the CO2-C was maize-derived C. The C-13 content in the CO2 decreased with continuous decomposition of the litter. The highest absolute amount of maize-derived C was found in gram-positive bacteria in the early stage of litter decomposition. For fungi, the highest maize C incorporation was in the intermediate stage of litter decomposition. We calculated a faster C turnover in the fungal biomass than in the bacterial biomass for all three decomposition stages. But during the later stage of litter decomposition, maize-derived C was less utilized by both bacteria and fungi. These results will be concluded by the quantitative DNA-SIP method to provide a species-resolved contribution to the C turnover in the microbial food web at different decomposition stages in the detritusphere

    Spatial variability of hydrolytic and oxidative potential enzyme activities in different subsoil compartments.

    No full text
    © 2015 Springer-Verlag Berlin Heidelberg The spatial heterogeneity of nutrient turnover in subsoils has been rarely studied in the past, although drilosphere and rhizosphere are found to be important microbial hotspots in this oligotrophic environment. In this study, we measured different potential enzyme activities in different soil compartments of subsoil and topsoil. It could be shown that the activities of hydrolases, which cleave readily available organic substrates, are significantly higher in samples from the drilosphere and rhizosphere both in topsoil and subsoil. In bulk soil, hydrolase activities decrease with depth. In contrast, oxidative enzymes, which are involved in the decay of recalcitrant organic material, are released from the microbial community especially in the bulk fraction of subsoil. This emphasizes the importance of subsoil for nutrient acquisition and gives evidence for a distinct spatial separation of microbes with diverging lifestyles

    Community structure of prokaryotes and their functional potential in subsoils is more affected by spatial heterogeneity than by temporal variations.

    No full text
    Spatial and temporal dynamics of microbial community structure and function in subsoils have been rarely studied in the past. In this paper we present data on how bacterial communities as well as selected functional groups of microbes change in the rhizosphere, the drilosphere, and in bulk soil over time in topsoil as well as in subsoil. We show that the overall richness of bacteria and abundance of nitrifiers and denitrifiers decreases in bulk soil with soil depth. However, these effects were not or to a much lower degree observed in the rhizosphere and the drilosphere. Temporal fluctuations contributed by far less than spatial factors to the dynamics of bacterial communities and abundance of nitrifiers and denitrifiers in all compartments independent from the soil depth

    Abundance of ammonia oxidizing microbes and denitrifiers in different soil horizons of an agricultural soil in relation to the cultivated crops.

    No full text
    The role of subsoils and their microbial communities for the nutrient supply for plants is to a large extent unknown, especially in comparison to well investigated topsoil layers. Therefore, in this study, the influence of three different plant species with different rooting systems and different N uptake strategies on ammonium and nitrate levels and microbial communities involved in ammonia oxidation and denitrification was investigated in different soil horizons. Overall, our results show a higher genetic potential for both processes in topsoils than in subsoils independent of the present plant. Although we found accumulation of N in top and subsoils in plots with legumes, we could not observe an impact of the higher nitrate content on the genetic potential of denitrification and ammonia oxidation. However, differences in the ratios of ammonia oxidizing archaea to bacteria and also between denitrifying bacteria harboring genes for copper- (nirK) or cytochrome- (nirS) dependent nitrite reductase in top and subsoil samples reveal different ecophysiologies of microbes involved in N turnover in top and subsoil habitats

    Prokaryotes in subsoil - evidence for a strong spatial separation of different phyla by analysing co-occurrence networks.

    Get PDF
    Microbial communities in soil provide a wide range of ecosystem services. On the small scale, nutrient rich hotspots in soil developed from the activities of animals or plants are important drivers for the composition of microbial communities and their functional patterns. However, in subsoil, the spatial heterogeneity of microbes with differing lifestyles has been rarely considered so far. In this study, the phylogenetic composition of the bacterial and archaeal microbiome based on 16S rRNA gene pyrosequencing was investigated in the soil compartments bulk soil, drilosphere, and rhizosphere in top- and in the subsoil of an agricultural field. With co-occurrence network analysis, the spatial separation of typically oligotrophic and copiotrophic microbes was assessed. Four bacterial clusters were identified and attributed to bulk topsoil, bulk subsoil, drilosphere, and rhizosphere. The bacterial phyla Proteobacteria and Bacteroidetes, representing mostly copiotrophic bacteria, were affiliated mainly to the rhizosphere and drilosphere—both in topsoil and subsoil. Acidobacteria, Actinobacteria, Gemmatimonadetes, Planctomycetes, and Verrucomicrobia, bacterial phyla which harbor many oligotrophic bacteria, were the most abundant groups in bulk subsoil. The bacterial core microbiome in this soil was estimated to cover 7.6% of the bacterial sequencing reads including both oligotrophic and copiotrophic bacteria. In contrast the archaeal core microbiome includes 56% of the overall archaeal diversity. Thus, the spatial variability of nutrient quality and quantity strongly shapes the bacterial community composition and their interaction in subsoil, whereas archaea build a stable backbone of the soil prokaryotes due to their low variability in the different soil compartments

    Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.

    No full text
    In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60. days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability

    Subsoil arbuscular mycorrhizal fungal communities in arable soil differ from those in topsoil.

    No full text
    Arbuscular mycorrhizal fungi are recognized as important drivers of plant health and productivity in agriculture but very often existing knowledge is limited to the topsoil. With growing interest in the role of subsoil in sustainable agriculture, we used high-throughput Illumina sequencing on a set of samples encompassing drilosphere, rhizosphere and bulk soil, in both top- and subsoil. Our results show subsoil AMF communities harbor unique Operational Taxonomic Units (OTUs) and that both soil depths differ in community structure both at the OTU and family level. Our results emphasize the distinctness of subsoil AMF communities and the potential role of subsoil as a biodiversity reservoir

    Bacteria utilising plant-derived carbon in the rhizosphere of <em>Triticum aestivum</em> change in different depths of an arable soil.

    No full text
    Root exudates shape microbial communities at the plant soil interface. Here we compared bacterial communities that utilise plant-derived carbon in the rhizosphere of wheat in different soil depths, including topsoil, as well as two subsoil layers up to 1 m depth. The experiment was performed in a green house using soil monoliths with intact soil structure taken from an agricultural field. To identify bacteria utilizing plant derived carbon, (13) C-CO2 labelling of plants was performed for two weeks at the EC50 stage, followed by stable isotope probing of extracted DNA from the rhizosphere combined with 16S rRNA gene-based amplicon sequencing. Our findings suggest substantially different bacterial key players and interaction mechanisms between plants and bacteria utilising plant-derived carbon in the rhizosphere of subsoils and topsoil. Among the three soil depths, clear differences were found in (13) C enrichment pattern across abundant operational taxonomic units (OTUs). Whereas OTUs linked to Proteobacteria were enriched in (13) C mainly in the topsoil, in both subsoil layers OTUs related to Cohnella, Paenibacillus, Flavobacterium showed a clear (13) C signal, indicating an important, so far overseen role of Firmicutes and Bacteriodetes in the subsoil rhizosphere

    Deployable Bistable Composite Helical Antennas for Small Satellite Applications

    Get PDF
    An ultra-compact deployable helical antenna is presented, designed to enhance space-based reception of Automatic Identification System signals for maritime surveillance. The radio frequency performance (i.e. peak gain and directionality) is simulated at 162 MHz using ANSYS High Frequency Structure Simulator and evaluated over a range [0.5–8] of helical turns. Established and commercially available omnidirectional antennas suffer interference caused by the large number of incoming signals. A 7-turn helix with planar ground plane is proposed as a compact directional-antenna solution, which produces a peak gain of 11.21±0.14 dBi and half-power beam width of 46.5±0.5 degrees. Manufacturing the helical structure using bistable composite enables uniquely high packaging efficiencies. The helix has a deployed axial length of 3.22 m, a diameter of 58 cm, and a stowed (i.e. coiled) height and diameter of 5 cm — the stowed-to-deployed volume ratio is approximately 1:9,800 (0.01%). The use of ultra-thin and lightweight composite results in an estimated mass of 163 grams. The structural stability (i.e. natural vibration frequency) is also investigated to evaluate the risk an unstable deployed antenna may have on the radio frequency performance. The first vibration mode of the 7-turn helix is at 0.032 Hz indicating the need for additional stiffening

    Interactions between cover crops and soil microorganisms increase phosphorus availability in conservation agriculture

    Get PDF
    Aims An essential task of agricultural systems is to im- prove internal phosphorus (P) recycling. Cover crops and tillage reduction can increase sustainability, but it is not known whether stimulation of the soil microbial commu- nity can increase the availability of soil organic P pools. Methods In a field experiment in southwest Germany, the effects of a winter cover crop mixture (vs. bare fallow) and no-till (vs. non-inversion tillage) on microbial P- cycling were assessed with soybean as the main crop. Microbial biomass, phospholipid fatty acids (PLFAs), P cycling enzymes, and carbon-substrate use capacity were linked for the first time with the lability of organic P pools measured by enzyme addition assays (using phosphodi- esterase, non-phytase-phosphomonoesterase and fungal phytase). Results Microbial phosphorus, phosphatase, and fatty acids increased under cover crops, indicating an en- hanced potential for organic P cycling. Enzyme-stable organic P shifted towards enzyme-labile organic P pools. Effects of no-till were weaker, and a synergy with cover crops was not evident. Conclusions In this experiment, cover crops were able to increase the microbially mediated internal P cycling in a non-P-limited, temperate agroecosystems
    corecore