3 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The Prediction Analysis of Microarray 50 (PAM50) Gene Expression Classifier Utilized in Indeterminate-Risk Breast Cancer Patients in Hungary: A Consecutive 5-Year Experience

    No full text
    Background: Breast cancer has been categorized into molecular subtypes using immunohistochemical staining (IHC) and fluorescence in situ hybridization (FISH) since the early 2000s. However, recent research suggests that gene expression testing, specifically Prosigna® Prediction Analysis of Microarray 50 (PAM50), provides more accurate classification methods. In this retrospective study, we compared the results of IHC/FISH and PAM50 testing. We also examined the impact of various PAM50 parameters on overall survival (OS) and progression-free survival (PFS). Results: We analyzed 42 unilateral breast cancer samples, with 18 classified as luminal A, 10 as luminal B, 8 as Human epidermal growth factor receptor 2 (HER2)-positive, and 6 as basal-like using PAM50. Interestingly, 17 out of the 42 samples (40.47%) showed discordant results between histopathological assessment and the PAM50 classifier. While routine IHC/FISH resulted in classification differences for a quarter to a third of samples within each subtype, all basal-like tumors were misclassified. Hormone receptor-positive tumors (hazard rate: 8.7803; p = 0.0085) and patients who had higher 10-year recurrence risk scores (hazard rate: 1.0539; p = 0.0201) had shorter OS and PFS. Conclusions: Our study supports the existing understanding of molecular subtypes in breast cancer and emphasizes the overlap between clinical characteristics and molecular subtyping. These findings underscore the value of gene expression profiling, such as PAM50, in improving treatment decisions for breast cancer patients
    corecore