12 research outputs found

    Mega-Analysis of Gray Matter Volume in Substance Dependence: General and Substance-Specific Regional Effects

    Get PDF
    Objective: Although lower brain volume has been routinely observed in individuals with substance dependence compared with nondependent control subjects, the brain regions exhibiting lower volume have not been consistent across studies. In addition, it is not clear whether a common set of regions are involved in substance dependence regardless of the substance used or whether some brain volume effects are substance specific. Resolution of these issues may contribute to the identification of clinically relevant imaging biomarkers. Using pooled data from 14 countries, the authors sought to identify general and substance-specific associations between dependence and regional brain volumes. Method: Brain structure was examined in a mega-analysis of previously published data pooled from 23 laboratories, including 3,240 individuals, 2,140 of whom had substance dependence on one of five substances: alcohol, nicotine, cocaine, methamphetamine, or cannabis. Subcortical volume and cortical thickness in regions defined by FreeSurfer were compared with nondependent control subjects when all sampled substance categories were combined, as well as separately, while controlling for age, sex, imaging site, and total intracranial volume. Because of extensive associations with alcohol dependence, a secondary contrast was also performed for dependence on all substances except alcohol. An optimized split-half strategy was used to assess the reliability of the findings. Results: Lower volume or thickness was observed in many brain regions in individuals with substance dependence. The greatest effects were associated with alcohol use disorder. A set of affected regions related to dependence in general, regardless of the substance, included the insula and the medial orbitofrontal cortex. Furthermore, a support vector machine multivariate classification of regional brain volumes successfully classified individuals with substance dependence on alcohol or nicotine relative to nondependent control subjects. Conclusions: The results indicate that dependence on a range of different substances shares a common neural substrate and that differential patterns of regional volume could serve as useful biomarkers of dependence on alcohol and nicotine

    Early Aβ-targeting interventions in mouse models of Alzheimer pathology

    Get PDF
    Alzheimer’s disease (AD) is the leading form of dementia affecting approximately 35 million people worldwide. So far, only symptomatic treatment is approved which does not change the course of the disease. Over the last years, prevention trials for AD started to rise new hope for effective therapies based on the knowledge that changes in amyloid-β (Aβ) levels can be detected more than two decades before symptom onset. However, the most beneficial timepoint for early intervention and the best treatment strategies remain unknown. We examined the concepts of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibition and anti Aβ immunization as prevention strategies. In the first study of this thesis, the optimal timepoint for intervention during pathogenesis was determined. Amyloid precursor protein (APP) transgenic mice were treated for three months with a potent BACE1 inhibitor at an early, intermediate or late stage of pathology or chronically for either half-lifelong or lifelong duration. Effects on neurodegeneration and associated pathologies were established. In the second study, well described anti-Aβ antibodies were applied to APP transgenic mice at initial stage of β-amyloidosis. Their ability to neutralize seeding-active Aβ assemblies was investigated in order to assess preventive effects at sub-threshold Aβ levels before Aβ increase can be detected. Furthermore, antibody recognition profiles using size-fractionated brain-derived Aβ assemblies were established. In the first study, early BACE1 inhibition robustly reduced Aβ deposition and halted neurodegeneration, whereas at later stages of pathology, neurodegeneration became uncoupled of β-amyloidosis. In the second study, acute immunization with an anti-Aβ antibody led to a long-term significant reduction of Aβ deposition and downstream pathologies, demonstrating the presence of pathogenic Aβ seeds before Aβ deposition can be detected. Findings imply that preclinical therapy should shift to initial stages of Aβ dyshomeostasis before β-amyloid deposition is detectable. This primary prevention approach may forestall further seed formation and neurodegeneration, thereby preventing the onset of AD

    Subcortical surface morphometry in substance dependence: An ENIGMA addiction working group study

    Get PDF
    2019 Society for the Study of Addiction While imaging studies have demonstrated volumetric differences in subcortical structures associated with dependence on various abused substances, findings to date have not been wholly consistent. Moreover, most studies have not compared brain morphology across those dependent on different substances of abuse to identify substance-specific and substance-general dependence effects. By pooling large multinational datasets from 33 imaging sites, this study examined subcortical surface morphology in 1628 nondependent controls and 2277 individuals with dependence on alcohol, nicotine, cocaine, methamphetamine, and/or cannabis. Subcortical structures were defined by FreeSurfer segmentation and converted to a mesh surface to extract two vertex-level metrics-the radial distance (RD) of the structure surface from a medial curve and the log of the Jacobian determinant (JD)-that, respectively, describe local thickness and surface area dilation/contraction. Mega-analyses were performed on measures of RD and JD to test for the main effect of substance dependence, controlling for age, sex, intracranial volume, and imaging site. Widespread differences between dependent users and nondependent controls were found across subcortical structures, driven primarily by users dependent on alcohol. Alcohol dependence was associated with localized lower RD and JD across most structures, with the strongest effects in the hippocampus, thalamus, putamen, and amygdala. Meanwhile, nicotine use was associated with greater RD and JD relative to nonsmokers in multiple regions, with the strongest effects in the bilateral hippocampus and right nucleus accumbens. By demonstrating subcortical morphological differences unique to alcohol and nicotine use, rather than dependence across all substances, results suggest substance-specific relationships with subcortical brain structures

    Subcortical surface morphometry in substance dependence: An ENIGMA addiction working group study

    No full text
    While imaging studies have demonstrated volumetric differences in subcortical structures associated with dependence on various abused substances, findings to date have not been wholly consistent. Moreover, most studies have not compared brain morphology across those dependent on different substances of abuse to identify substance-specific and substance-general dependence effects. By pooling large multinational datasets from 33 imaging sites, this study examined subcortical surface morphology in 1628 nondependent controls and 2277 individuals with dependence on alcohol, nicotine, cocaine, methamphetamine, and/or cannabis. Subcortical structures were defined by FreeSurfer segmentation and converted to a mesh surface to extract two vertex-level metrics-the radial distance (RD) of the structure surface from a medial curve and the log of the Jacobian determinant (JD)-that, respectively, describe local thickness and surface area dilation/contraction. Mega-analyses were performed on measures of RD and JD to test for the main effect of substance dependence, controlling for age, sex, intracranial volume, and imaging site. Widespread differences between dependent users and nondependent controls were found across subcortical structures, driven primarily by users dependent on alcohol. Alcohol dependence was associated with localized lower RD and JD across most structures, with the strongest effects in the hippocampus, thalamus, putamen, and amygdala. Meanwhile, nicotine use was associated with greater RD and JD relative to nonsmokers in multiple regions, with the strongest effects in the bilateral hippocampus and right nucleus accumbens. By demonstrating subcortical morphological differences unique to alcohol and nicotine use, rather than dependence across all substances, results suggest substance-specific relationships with subcortical brain structures

    Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium

    No full text
    corecore