53 research outputs found

    Archaic chaperone-usher pili self-secrete into superelastic zigzag springs

    Get PDF
    Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria(1-3). Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens(1,4,5). However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections

    Environmental pleiotropy and demographic history direct adaptation under antibiotic selection

    Get PDF
    Evolutionary rescue following environmental change requires mutations permitting population growth in the new environment. If change is severe enough to prevent most of the population reproducing, rescue becomes reliant on mutations already present. If change is sustained, the fitness effects in both environments, and how they are associated-termed 'environmental pleiotropy'-may determine which alleles are ultimately favoured. A population's demographic history-its size over time-influences the variation present. Although demographic history is known to affect the probability of evolutionary rescue, how it interacts with environmental pleiotropy during severe and sustained environmental change remains unexplored. Here, we demonstrate how these factors interact during antibiotic resistance evolution, a key example of evolutionary rescue fuelled by pre-existing mutations with pleiotropic fitness effects. We combine published data with novel simulations to characterise environmental pleiotropy and its effects on resistance evolution under different demographic histories. Comparisons among resistance alleles typically revealed no correlation for fitness-i.e., neutral pleiotropy-above and below the sensitive strain's minimum inhibitory concentration. Resistance allele frequency following experimental evolution showed opposing correlations with their fitness effects in the presence and absence of antibiotic. Simulations demonstrated that effects of environmental pleiotropy on allele frequencies depended on demographic history. At the population level, the major influence of environmental pleiotropy was on mean fitness, rather than the probability of evolutionary rescue or diversity. Our work suggests that determining both environmental pleiotropy and demographic history is critical for predicting resistance evolution, and we discuss the practicalities of this during in vivo evolution

    Differential Requirements of Two recA Mutants for Constitutive SOS Expression in Escherichia coli K-12

    Get PDF
    Background Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recAC) in the absence of external DNA damage in log phase cells. Methodology/Principal Findings Genetic analysis of two recAC mutants was used to determine the mechanism of constitutive SOS (SOSC) expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp). SOSC expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOSC expression in recA730 mutants was affected by none of the mutations or conditions tested above. Conclusions/Significance It is concluded that not all recAC alleles cause SOSC expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOSC expression by binding to ssDNA in a mechanism yet to be determined

    Discovery of potent inhibitors of PapG adhesins from uropathogenic Escherichia coli through synthesis and evaluation of galabiose derivatives

    No full text
    The synthesis of two galabioside (Golalpha1-4Gal) collections based on diversification at the O-1 and O-3' atoms is reported. The galabiosides were evaluated as inhibitors of hemagglutination of human erythrocytes by two strains of Escherichia coli that expressed the class I and class II PapG adhesins, respectively. The class I adhesin. was found to prefer aromatic substituents both at the O-1 and the O-3' position of the galabiose disaccharide. One galabioside, p-methoxyphenyl [3-O-(m-nitrobenzyl)-alpha-D-galacto-pyranosyl]-(1-4)-beta-D-galactopyro noside], had an IC50 value of 4.1 mum, which is the best inhibition of the class I adhesin to date

    Guideline for Urine Culture and Biochemical Identification of Bacterial Urinary Pathogens in Low-Resource Settings.

    No full text
    Medical diagnosis in low-resource settings is confronted by the lack of suitable guidelines, protocols and checklists. Online-accessible procedural documents are difficult to find, might be mistranslated or interpreted and usually do not address the needs of developing countries. Urinalysis, one of the most frequently performed diagnostic examinations worldwide, involves a series of tests aiming to detect particular disorders, such as urinary tract infections, kidney disease and diabetes. In this guideline, we present an alternative approach for clinical laboratories with limited resources to identify common bacterial uropathogens. We propose dividing the identification plan into two levels. The implicated pathogen will first be assigned into a bacterial group, basic identification, against which a suitable panel of antimicrobial agents shall be selected for the antimicrobial susceptibility testing (AST). Characterization of the pathogen to the genus or species level, advanced identification, will then be performed to ensure correct reading of the AST results and determine the epidemiology of clinically significant pathogens. Most of the proposed steps in our guideline are tailored to meet the needs of clinical laboratories in low-resource settings. Such guidelines are needed to strengthen the capacity of regional pathology laboratories and to enhance international initiatives on antimicrobial resistance and health equity

    In Vitro Replication of Rl Miniplasmid DNA

    No full text
    • …
    corecore