7 research outputs found

    Antagonistic Interaction of Selenium and Cadmium in Human Hepatic Cells Through Selenoproteins

    Get PDF
    Cadmium (Cd) is a highly toxic heavy metal for humans and animals, which is associated with acute hepatotoxicity. Selenium (Se) confers protection against Cd-induced toxicity in cells, diminishing the levels of ROS and increasing the activity of antioxidant selenoproteins such as glutathione peroxidase (GPx). The aim of this study was to evaluate the antagonistic effect of selenomethionine (SeMet) against Cd toxicity in HepG2 cells, through the modulation of selenoproteins. To this end, the cells were cultured in the presence of 100 ”M SeMet and 5 ”M, 15 ”M, and 25 ”M CdCl2 and a combination of both species for 24 h. At the end of the experiment, cell viability was determined by MTT assay. The total metal content of Cd and Se was analyzed by triple-quadrupole inductively coupled plasma–mass spectrometry (ICP-QqQ-MS). To quantify the concentration of three selenoproteins [GPx, selenoprotein P (SELENOP), and selenoalbumin (SeAlb)] and selenometabolites, an analytical methodology based on column switching and a species-unspecific isotopic dilution approach using two-dimensional size exclusion and affinity chromatography coupled to ICP-QqQ-MS was applied. The co-exposure of SeMet and Cd in HepG2 cells enhanced the cell viability and diminished the Cd accumulation in cells. Se supplementation increased the levels of selenometabolites, GPx, SELENOP, and SeAlb; however, the presence of Cd resulted in a significant diminution of selenometabolites and SELENOP. These results suggested that SeMet may affect the accumulation of Cd in cells, as well as the suppression of selenoprotein synthesis induced by Cd.This work was supported by the projects PG2018-096608-B-C21 from the Spanish Ministry of Economy and Competitiveness (MINECO). SR-A thanks the Spanish Ministry of Economy and Competitiveness for a PhD scholarship (BES-2016-076364). The authors are grateful to FEDER (European Community) for financial support, grant UNHU13-1E-1611

    Pogostick: A New Versatile piggyBac Vector for Inducible Gene Over-Expression and Down-Regulation in Emerging Model Systems

    Get PDF
    Non-traditional model systems need new tools that will enable them to enter the field of functional genetics. These tools should enable the exploration of gene function, via knock-downs of endogenous genes, as well as over-expression and ectopic expression of transgenes.We constructed a new vector called Pogostick that can be used to over-express or down-regulate genes in organisms amenable to germ line transformation by the piggyBac transposable element. Pogostick can be found at www.addgene.org, a non-profit plasmid repository. The vector currently uses the heat-shock promoter Hsp70 from Drosophila to drive transgene expression and, as such, will have immediate applicability to organisms that can correctly interpret this promotor sequence. We detail how to clone candidate genes into this vector and test its functionality in Drosophila by targeting a gene coding for the fluorescent protein DsRed. By cloning a single DsRed copy into the vector, and generating transgenic lines, we show that DsRed mRNA and protein levels are elevated following heat-shock. When cloning a second copy of DsRed in reverse orientation into a flanking site, and transforming flies constitutively expressing DsRed in the eyes, we show that endogenous mRNA and protein levels drop following heat-shock. We then test the over-expression vector, containing the complete cDNA of Ultrabithorax (Ubx) gene, in an emerging model system, Bicyclus anynana. We produce a transgenic line and show that levels of Ubx mRNA expression rise significantly following a heat-shock. Finally, we show how to obtain genomic sequence adjacent to the Pogostick insertion site and to estimate transgene copy number in genomes of transformed individuals.This new vector will allow emerging model systems to enter the field of functional genetics with few hurdles

    FLP Recombinase-Mediated Site-Specific Recombination in Silkworm, Bombyx mori

    Get PDF
    A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species

    Book reviews

    No full text
    corecore