8 research outputs found

    Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis.

    Get PDF
    Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are two neurodegenerative diseases with clinical, genetic and pathological overlap. As such, they are commonly regarded as a single spectrum disorder, with pure FTD and pure ALS representing distinct ends of a continuum. Dysfunctional endo-lysosomal and autophagic trafficking, leading to impaired proteostasis is common across the FTD-ALS spectrum. These pathways are, in part, mediated by CHMP2B, a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Here we review how ALS and FTD disease causing mutations in CHMP2B have greatly contributed to our understanding of how endosomal-lysosomal and autophagic dysfunction contribute to neurodegeneration, and how in vitro and in vivo models have helped elucidate novel candidates for potential therapeutic intervention with implications across the FTD-ALS spectrum

    Neuronal influences are necessary to produce mitochondrial co-localization with glutamate transporters in astrocytes.

    Get PDF
    yesAbstract Recent evidence suggests that the predominant astrocyte glutamate transporter, GLT-1/ Excitatory Amino Acid Transporter 2 (EAAT2) is associated with mitochondria. We used primary cultures of mouse astrocytes to assess co-localization of GLT-1 with mitochondria, and tested whether the interaction was dependent on neurons, actin polymerization or the kinesin adaptor, TRAK2. Mouse primary astrocytes were transfected with constructs expressing V5-tagged GLT-1, pDsRed1-Mito with and without dominant negative TRAK2. Astrocytes were visualized using confocal microscopy and co-localization was quantified using Volocity software. Image analysis of confocal z-stacks revealed no co-localization between mitochondria and GLT-1 in pure astrocyte cultures. Co-culture of astrocytes with primary mouse cortical neurons revealed more mitochondria in processes and a positive correlation between mitochondria and GLT-1. This co-localization was not further enhanced after neuronal depolarization induced by 1 h treatment with 15 mM K+. In pure astrocytes, a rho kinase inhibitor, Y27632 caused the distribution of mitochondria to astrocyte processes without enhancing GLT-1/mitochondrial co-localization, however, in co-cultures, Y27632 abolished mitochondrial: GLT-1 co-localization. Disrupting potential mitochondrial: kinesin interactions using dominant negative TRAK2 did not alter GLT-1 distribution or GLT-1: mitochondrial co-localization. We conclude that the association between GLT-1 and mitochondria is modest, is driven by synaptic activity and dependent on polymerized actin filaments. Mitochondria have limited co-localization with the glutamate transporter GLT-1 in primary astrocytes in culture. Few mitochondria are in the fine processes where GLT-1 is abundant. It is necessary to culture astrocytes with neurones to drive a significant level of co-localization, but co-localization is not further altered by depolarization, manipulating sodium ion gradients or Na/K ATPase activity

    In vivo visual screen for dopaminergic Rab ⇿ LRRK2-G2019S interactions in Drosophila discriminates Rab10 from Rab3

    Get PDF
    LRRK2 mutations cause Parkinson’s, but the molecular link from increased kinase activity to pathological neurodegeneration remains undetermined. Previous in vitro assays indicate that LRRK2 substrates include at least 8 Rab GTPases. We have now examined this hypothesis in vivo in a functional, electroretinogram screen, expressing each Rab with/without LRRK2-G2019S in selected Drosophila dopaminergic neurons. Our screen discriminated Rab10 from Rab3. The strongest Rab/LRRK2-G2019S interaction is with Rab10; the weakest with Rab3. Rab10 is expressed in a different set of dopaminergic neurons from Rab3. Thus, anatomical and physiological patterns of Rab10 are related. We conclude that Rab10 is a valid substrate of LRRK2 in dopaminergic neurons in vivo. We propose that variations in Rab expression contribute to differences in the rate of neurodegeneration recorded in different dopaminergic nuclei in Parkinson’s

    Astrocytes grown in Alvetex® 3 dimensional scaffolds retain a non-reactive phenotype

    Get PDF
    yesProtocols which permit the extraction of primary astrocytes from either embryonic or postnatal mice are well established however astrocytes in culture are different to those in the mature CNS. Three dimensional (3D) cultures, using a variety of scaffolds may enable better phenotypic properties to be developed in culture. We present data from embryonic (E15) and postnatal (P4) murine primary cortical astrocytes grown on coated coverslips or a 3D polystyrene scaffold, Alvetex. Growth of both embryonic and postnatal primary astrocytes in the 3D scaffold changed astrocyte morphology to a mature, protoplasmic phenotype. Embryonic-derived astrocytes in 3D expressed markers of mature astrocytes, namely the glutamate transporter GLT-1 with low levels of the chondroitin sulphate proteoglycans, NG2 and SMC3. Embroynic astrocytes derived in 3D show lower levels of markers of reactive astrocytes, namely GFAP and mRNA levels of LCN2, PTX3, Serpina3n and Cx43. Postnatal-derived astrocytes show few protein changes between 2D and 3D conditions. Our data shows that Alvetex is a suitable scaffold for growth of astrocytes, and with appropriate choice of cells allows the maintenance of astrocytes with the properties of mature cells and a non-reactive phenotype.BBSR
    corecore