1,067 research outputs found
LUCAS Soil Component: proposal for analysing new physical, chemical and biological soil parameters
Experimental evidence of a natural parity state in Mg and its impact to the production of neutrons for the s process
We have studied natural parity states in Mg via the
Ne(Li,d)Mg reaction. Our method significantly improves the
energy resolution of previous experiments and, as a result, we report the
observation of a natural parity state in Mg. Possible spin-parity
assignments are suggested on the basis of published -ray decay
experiments. The stellar rate of the Ne(,)Mg
reaction is reduced and may give rise to an increase in the production of
s-process neutrons via the Ne(,n)Mg reaction.Comment: Published in PR
Finite type approximations of Gibbs measures on sofic subshifts
Consider a H\"older continuous potential defined on the full shift
A^\nn, where is a finite alphabet. Let X\subset A^\nn be a specified
sofic subshift. It is well-known that there is a unique Gibbs measure
on associated to . Besides, there is a natural nested
sequence of subshifts of finite type converging to the sofic subshift
. To this sequence we can associate a sequence of Gibbs measures
. In this paper, we prove that these measures weakly converge
at exponential speed to (in the classical distance metrizing weak
topology). We also establish a strong mixing property (ensuring weak
Bernoullicity) of . Finally, we prove that the measure-theoretic
entropy of converges to the one of exponentially fast.
We indicate how to extend our results to more general subshifts and potentials.
We stress that we use basic algebraic tools (contractive properties of iterated
matrices) and symbolic dynamics.Comment: 18 pages, no figure
Recommended from our members
Temperature and nitrogen supply interact to determine protein distribution gradients in the wheat grain endosperm
Gradients exist in the distribution of storage proteins in the wheat (Triticum aestivum L.) endosperm and determine the milling properties and protein recovery rate of the grain. A novel image analysis technique was developed to quantify both the gradients in protein concentration, and the size distribution of protein bodies within the endosperm of wheat plants grown under two different (20 °C or 28 °C) post-anthesis temperatures, and supplied with a nutrient solution with either high or low nitrogen content. Under all treatment combinations protein concentration was greater in the endosperm cells closest to the aleurone layer, and decreased towards the centre of the two lobes of the grain, i.e. a negative gradient. This was accompanied by a decrease in size of protein bodies from the outer to the inner endosperm layers in all but one of the treatments. Elevated post-anthesis temperature had the effect of increasing the magnitude of the negative gradients in both protein concentration and protein body size, whilst limiting nitrogen supply decreased the gradients
Multi-channel R-matrix analysis of CNO cycle reactions
The CNO cycle is the main process for hydrogen burning in stars somewhat more massive than the Sun. The reaction cross sections at Gamow energies are typically in the femto to pico-barn range and are consequently very difficult to measure experimentally. The CNO reaction rates are based on extrapolations of experimental data from higher energies. We are developing a multi-channel R-matrix code (AZURE) to provide a new and more comprehensive tool for fitting experimental data and making extrapolations to lower energies in all reaction and scattering channels. The 14N(p,γ )15O reaction is the slowest reaction of the CNO cycle and thus it determines the energy production rate of CNO burning. Furthermore, this reaction plays an important role in the determination of Globular Cluster age, since the position of the turnoff point, at which the GC stars escape from the Main Sequence, is powered by the onset of the CNO burning, whose bottleneck is the 14N(p, γ )15O. We have made a reanalysis of the most recent experimental data on the ground state and the 6.18 MeV transitions. The ratio of the cross sections of the 15N(p, γ )16O and 15N(p,α)12C reactions determines how much catalytic material passes to higher CNO cycles and has an effect on the production of heavier elements, particularly 16O and 17O. Simultaneous analysis of both reactions for all channels suggests that the ratio σγ/σα is smaller than previously reported
Independent measurement of the Hoyle state feeding from 12B using Gammasphere
Using an array of high-purity Compton-suppressed germanium detectors, we
performed an independent measurement of the -decay branching ratio from
to the second-excited (Hoyle) state in . Our
result is , which is a factor smaller than the previously
established literature value, but is in agreement with another recent
measurement. This could indicate that the Hoyle state is more clustered than
previously believed. The angular correlation of the Hoyle state
cascade has also been measured for the first time. It is consistent with
theoretical predictions
- …
