140 research outputs found
Two-electron lateral quantum-dot molecules in a magnetic field
Laterally coupled quantum dot molecules are studied using exact
diagonalization techniques. We examine the two-electron singlet-triplet energy
difference as a function of magnetic field strength and investigate the
magnetization and vortex formation of two- and four-minima lateral quantum dot
molecules. Special attention is paid to the analysis of how the distorted
symmetry affects the properties of quantum-dot molecules.Comment: 18 pages, 26 figure
Influence of shape of quantum dots on their far-infrared absorption
We investigate the effects of the shape of quantum dots on their far-infrared
absorption in an external magnetic field by a model calculation. We focus our
attention on dots with a parabolic confinement potential deviating from the
common circular symmetry, and dots having circular doughnut shape. For a
confinement where the generalized Kohn theorem does not hold we are able to
interprete the results in terms of a mixture of a center-of-mass mode and
collective modes reflecting an excitation of relative motion of the electrons.
The calculations are performed within the time-dependent Hartree approximation
and the results are compared to available experimental results.Comment: RevTeX, 16 pages with 10 postscript figures included. Submitted to
Phys. Rev.
Effect of using a high-purity Fe source on the transport properties of p-type beta-FeSi2 grown by molecular-beam epitaxy
journal articl
Classical double-layer atoms: artificial molecules
The groundstate configuration and the eigenmodes of two parallel
two-dimensional classical atoms are obtained as function of the inter-atomic
distance (d). The classical particles are confined by identical harmonic wells
and repel each other through a Coulomb potential. As function of d we find
several structural transitions which are of first or second order. For first
(second) order transitions the first (second) derivative of the energy with
respect to d is discontinuous, the radial position of the particles changes
discontinuously (continuously) and the frequency of the eigenmodes exhibit a
jump (one mode becomes soft, i.e. its frequency becomes zero).Comment: 4 pages, RevTex, 5 ps figures, to appear in Phys.Rev.Let
Rectangular quantum dots in high magnetic fields
We use density-functional methods to study the effects of an external
magnetic field on two-dimensional quantum dots with a rectangular hard-wall
confining potential. The increasing magnetic field leads to spin polarization
and formation of a highly inhomogeneous maximum-density droplet at the
predicted magnetic field strength. At higher fields, we find an oscillating
behavior in the electron density and in the magnetization of the dot. We
identify a rich variety of phenomena behind the periodicity and analyze the
complicated many-electron dynamics, which is shown to be highly dependent on
the shape of the quantum dot.Comment: 6 pages, 6 figures, submitted to Phys. Rev.
Photoluminescence decay time and electroluminescence of p-Si/beta-FeSi2 particles/n-Si and p-Si/beta-FeSi2 film/n-Si double-heterostructures light-emitting diodes grown by molecular-beam epitaxy
We have epitaxially grown Si/beta-FeSi2/Si (SFS) structures with beta-FeSi2 particles on Si(001), and SFS structures with beta-FeSi2 continuous films on both Si(001) and Si(111) substrates by molecular-beam epitaxy. All the samples exhibited the same photoluminescence (PL) peak wavelength of approximately 1.54 µm at low temperatures. However, the PL decay times for the 1.54 µm emission were different, showing that the luminescence originated from different sources. The decay curves of the SFS structures with beta-FeSi2 continuous films were fitted assuming a two-component model, with a short decay time (tau~10 ns) and a long decay time (tau~100 ns), regardless of substrate surface orientation. The short decay time was comparable to that obtained in the SFS structure with beta-FeSi2 particles. The short decay time was due to carrier recombination in beta-FeSi2, whereas the long decay time was probably due to a defect-related D1 line in Si. We obtained 1.6 µm electroluminescence (EL) at a low current density of 2 A/cm2 up to around room temperature. The temperature dependence of the EL peak energy of the SFS diodes with beta-FeSi2 particles can be fitted well by the semiempirical Varshni\u27s law. However, EL peak positions of the SFS diodes with the beta-FeSi2 films showed anomalous temperature dependence; they shifted to a higher energy with increasing temperature, and then decreased. These results indicate that the EL emission originated from several transitions
Quasiperiodic Hubbard chains
Low energy properties of half-filled Fibonacci Hubbard models are studied by
weak coupling renormalization group and density matrix renormalization group
method. In the case of diagonal modulation, weak Coulomb repulsion is
irrelevant and the system behaves as a free Fibonacci chain, while for strong
Coulomb repulsion, the charge sector is a Mott insulator and the spin sector
behaves as a uniform Heisenberg antiferromagnetic chain. The off-diagonal
modulation always drives the charge sector to a Mott insulator and the spin
sector to a Fibonacci antiferromagnetic Heisenberg chain.Comment: 4 pages, 4 figures; Final version to appear in Phys. Rev. Let
Energy levels and far-infrared spectroscopy for two electrons in a semiconductor nanoring
The effects of electron-electron interaction of a two-electron nanoring on
the energy levels and far-infrared (FIR) spectroscopy have been investigated
based on a model calculation which is performed within the exactly numerical
diagonalization. It is found that the interaction changes the energy spectra
dramatically, and also shows significant influence on the FIR spectroscopy. The
crossings between the lowest spin-singlet and triplet states induced by the
coulomb interaction are clearly revealed. Our results are related to the
experiment recently carried out by A. Lorke et al. [Phys. Rev. Lett. 84, 2223
(2000)].Comment: 17 pages, 6 figures, revised and accepted by Phys. Rev. B (Dec. 15
Short-range interactions in a two-electron system: energy levels and magnetic properties
The problem of two electrons in a square billiard interacting via a
finite-range repulsive Yukawa potential and subjected to a constant magnetic
field is considered. We compute the energy spectrum for both singlet and
triplet states, and for all symmetry classes, as a function of the strength and
range of the interaction and of the magnetic field. We show that the
short-range nature of the potential suppresses the formation of ``Wigner
molecule'' states for the ground state, even in the strong interaction limit.
The magnetic susceptibility shows low-temperature paramagnetic peaks
due to exchange induced singlet-triplet oscillations. The position, number and
intensity of these peaks depend on the range and strength of the interaction.
The contribution of the interaction to the susceptibility displays paramagnetic
and diamagnetic phases as a function of .Comment: 12 pages,6 figures; to appear in Phys. Rev.
- …
