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Two-electron lateral quantum-dot molecules in a magnetic field
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Laterally coupled quantum dot molecules are studied using exact diagonalization techniques. We examine
the two-electron singlet-triplet energy difference as a function of magnetic field strength and investigate the
magnetization and vortex formation of two- and four-minima lateral quantum dot molecules. Special attention
is paid to the analysis of how the distorted symmetry affects the properties of quantum-dot molecules.
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I. INTRODUCTION

The crossover from two-dimensional electron systems
(2DES) to meso- and nanoscale quantum dots (QDs) is an
interesting subject. In the infinite quantum Hall systems the
actual arrangement of impurities or disorder does not play a
role, even if the presence of disorder-induced localized states
is vital for the Hall plateaus to occur.! In the few-electron
QDs the type of disorder is certainly an important issue. In
the past, the majority of studies have concentrated on highly
symmetric parabolic QDs without disorder. The rich spec-
trum of crossing energy levels as a function of magnetic field
and strong interaction effects are nowadays rather well char-
acterized for the cases with a symmetric confinement
potential.” Recently, the focus has turned to understanding
properties of QDs in less symmetric confinement potentials.
For example, the rather simple far-infrared excitation spec-
trum of a purely parabolic QD is nowadays well understood,’
whereas the lowered symmetry introduces new features in
the spectrum whose interpretation is not straightforward at
all.*~'! Moreover, the lowered symmetry also gives rise to
modified ground state properties such as level anticrossings
and altered spin-phase diagram as a function of magnetic
field.!>13

After Loss and DiVincenzo proposition,'# coupled quan-
tum dots have gained interest due to possible realization as
spin-qubit based quantum gates in quantum computing.'3-!7
In addition to coherent single-spin operations, the two-spin
operations are sufficient for assembling any quantum com-
putation. Recent experiments have shown a remarkable suc-
cess in characterizing the few-electron eigenlevels,'®20 ap-
proximating relaxation and time-averaged coherence times
and mechanisms,”?> and reading single-spin or two-spin
states?>?* of the QDs whereas the coherent manipulation of
spin systems remained out of reach until very recent mea-
surements on two-spin rotations.?

In this paper we concentrate on two-electron quantum dot
molecules. These molecules consist of laterally, closely
coupled quantum dots. We treat correlation effects between
the electrons properly by directly diagonalizing the Hamil-
tonian matrix in the many-body basis (exact diagonalization
technique). This allows direct access to the ground state en-
ergy levels and all excited states for both spin-singlet and
spin-triplet states. We study these levels as well as singlet-
triplet splitting and magnetizations as a function of magnetic
field and dot-dot separation. We also analyze the properties
of many-body wave functions in detail.
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The magnetic field dependence of the ground state energy
and singlet-triplet splitting in nonparabolic QDs have
attracted recent interest.!>!31826-33 Magnetizations in
QDs have been measured indirectly with transport
measurements®* and recently with a direct technique with
improved sensitivity.>> For both measurements, semiclassical
approaches cannot explain the results. Also the magnetiza-
tions of nanoscale QDs do not show nonequilibrium currents
and de Haas-van Alphen oscillations which are observed in
2DES and mesoscopic QDs.’® In the nanoscale QDs the
quantum confinement and Coulomb interactions modify the
system compared to the 2DES.3 Theoretically, magnetiza-
tion (at zero temperature) is straightforward to calculate as
the derivative of the total energy with respect to magnetic
field. Magnetizations have been calculated for a small num-
ber of electrons in a parabolic QD,?” in a square dot with a
repulsive impurity,®® as well as for anisotropic QDs,?’ and
for self-assembled QDs and quantum rings.>* The magneti-
zation curves have been calculated using density-functional
theory for rectangular QDs?® and using the Hartree approxi-
mation for other types of noncircular QDs.*? A tight-binding
model for 10-100 electrons in single or two coupled QDs
has been used to calculate magnetization curves.*!

Calculations of vortices in QDs have also attracted much
interest lately.*>=4® Even if the vortices are not directly ex-
perimentally observable, they reveal interesting properties of
electron-electron correlations and of the structure of the
wave function. The nucleation of vortices in QD systems
could perhaps be observed by measuring magnetizations,
where each peak would correspond to one vortex added in
the system. However, the magnetization is difficult to mea-
sure for a small number of electrons, especially with direct
methods. Moreover, in a noncircular symmetry, as in quan-
tum dot molecules, and at high magnetic field strengths the
magnetization curves may become more complicated.

In our previous studies we have examined the properties
of two-electron, two-minima quantum-dot molecules
(QDMs) in a magnetic field. The ground state as a function
of magnetic field was found to have a highly nontrivial spin-
phase diagram and a composite-particle structure of the wave
function.'? Also the calculated far-infrared absorption spectra
in two-minima QDMs revealed clear deviations from the
Kohn modes of a parabolic QD. Surprisingly, the interactions
of the electrons smoothened the deviations instead of en-
hancing them.’ In Ref. 47 we briefly discuss some of the
results of the square-symmetric four-minima QDM.

©2005 The American Physical Society
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In this paper, we study in detail the properties of different
QDMs. Three different QDM confinements are studied thor-
oughly and their properties are compared to parabolic-
confinement single QDs. First, we calculate measurable
quantities such as energy eigenstates, singlet-triplet split-
tings, and magnetizations as a function of magnetic field.
Second, nonmeasurable quantities, such as conditional den-
sities, vortices, total densities, and the most probable posi-
tions are used to analyze the nature of the interacting elec-
trons in quantum states and also to analyze and understand
the properties of the measurable quantities. This paper is an
extension to our previous calculations of QDMs.'?4” We
study a two-minima QDM (double dot), a square-symmetric
four-minima QDM, and a rectangular-symmetric four-
minima QDM. The aim of this paper is to study how the
confinement potential affects the properties of interacting
electrons in a low-symmetry QD.

This paper is organized as follows: In Sec. II we explain
how the quantum-dot molecules are modeled and what kind
of basis we use in the exact diagonalization method. We also
discuss calculation of magnetizations and the conditional
single-particle wave function which we use to locate the vor-
tices and study the conditional density. In the following four
sections we present our results. In Sec. III we discuss prop-
erties of a single parabolic quantum dot, and in Sec. IV we
analyze the properties of a double dot. In Sec. V we present
results for the square-symmetric four-minima quantum-dot
molecule, and finally in Sec. VI the results for rectangular
four-minima quantum-dot molecule. The analysis of the re-
sults is presented in Sec. VII. The summary is given in Sec.
VIIL.

II. MODEL AND METHOD

We model the two-electron QDM with the two-
dimensional Hamiltonian
2
e

2 (— iﬁVi——A) 2

c e
H=2 |\ —————+Vr)|[+—. (1)

-1 2m €ry

where V, is the external confinement potential taken to be

1 M
V() =m’ g min[ > (r- L,)z} : (2)

where the coordinates are in two dimensions r=(x,y) and the
L;s [L;=(+L,, =L,)] give the positions of the minima of the
QDM potential, and M is the number of minima. When L;
=(0,0) (and M=1) we have a single parabolic QD. With
M=2 and L, ,=(*L,,0) we get a double-dot potential. We
also study four-minima QDM (M =4) with minima at four
possibilities of (+L,,+L,) (see Fig. 1). We study both
square-symmetric (L,=L,) and rectangular-symmetric (L,
#Ly) four-minima QDMs. The confinement potential can
also be written using the absolute values of x and y coordi-
nates as
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FIG. 1. (Color online) Confinement potential of square-
symmetric (L,=L,=5 nm) four-minima quantum dot molecule.

L,
V. (x,y) = oM wp X [2 = 2L,Jx| - 2L Jy[ + L+ Li] (3)

For nonzero L, and L,, the perturbation to the parabolic po-
tential comes from the linear terms of L, or L, containing
also the absolute value of the associated coordinate.

We use the GaAs material parameters m"/m,=0.067 and
€=12.4, and the confinement strength Awy=3.0 meV. This
confinement corresponds to the harmonic oscillator length of
ly=\h/wym" =20 nm. We concentrate on closely coupled
QDMs where L, ,<I,. The magnetic field (in z direction) is
included in the symmetric gauge by the vector potential A.
The Hamiltonian of Eq. (1) is spin-free, and the Zeeman
energy can be included in the total energy afterwards (E,
=g" upBS, with g“=—0.44 for GaAs). We disregard the three-
fold splitting of each triplet state (S,=0,+1) and consider
only the lowest energy one (S,=1).

We drop the explicit spin-part of the wave function and
expand the many-body wave function in symmetric functions
for the spin-singlet state (S=0) and antisymmetric functions
for the spin-triplet state (S=1).

W(ry,r,) = 2 ai,j{¢i(r1)¢j(r2) + (= 1)S¢i(1'2)¢j(1'1)},

i<j

4)
where «; ;s are complex coefficients. The one-body basis

functions ¢;(r) are 2D Gaussians.

2
By (1) =Xy, B

where n, and n, are positive integers. The complex coeffi-
cient vector ¢; and the corresponding energy E; are found
from the generalized eigenvalue problem where the overlap
and Hamiltonian matrix elements are calculated analytically.
The matrix is diagonalized numerically.

The basis is suitable for closely coupled QDs. At large
distances and at high magnetic field we expect less accurate
results. The accuracy may also depend on the symmetry of
the state. At zero magnetic field the parabolic two-electron
QD can be modeled with a very good precision by expanding
the basis (in a given symmetry) in relative coordinates. In
Fig. 2 we compare the energy of the very accurate solution
and the one using our basis (for a parabolic QD) as a func-
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FIG. 2. (Color online) Relative error in the energy of a parabolic
two-electron QD at B=0 as a function of the basis size n,=n, from
3 to 8, which corresponds to around 40-2000 many—body basis
functions in the expansion. The relative angular momentum state of
electrons is denoted with m.

tion of the basis size, where the maximum n,=n, ranges
from 3 to 8. These values correspond to around 40-2000
many-body configurations in the expansion. States with m
=0,1,2,3 refer to different relative angular momentum
states. The relative error, even with the smallest basis studied
n,=n,=3, is less than 1% and decreases rapidly with the
increasing basis size. The greatest error is found for the m
=0 state.

The magnetization can be calculated as the derivative of
the total energy with respect to magnetic field. It can be
divided into two parts, paramagnetic and diamagnetic,

oE e

M=-Z =(v]
oB

2
" e
L.+ g 1S V) - — (V| 2W)B,
c 8m ¢ i

2m

(6)

where the former is constant as a function of magnetic field,
for a given angular momentum and spin state, and the latter
depends linearly on magnetic field. The diamagnetic contri-
bution to the magnetization is also a measure of the spatial
extension of the ground state.’

Total electron density can be obtained by integrating one
variable out from the two-body wave function

n(ry) = f dry|Ws(r, 1)) (7)

In practice we do not perform numerical integration. The
density is directly calculated in our diagonalization code
where the required matrix elements are calculated analyti-
cally.

We analyze the two-body wave function by constructing a
conditional single-particle wave function

Wl (x,y), (x3,75)]
Wl(xp, ), (0, 5)]°

where one electron is fixed at position (x,,y,) and the den-
sity (|¢.(r)|?) and phase [6,.(r)] of the other electron can be

Y1) = [ (r)] %) = (8)
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studied. One of the electrons is usually fixed at the most
probable position (x,,y,), but we also analyze #.(r) when
the other electron is fixed at some other position. The most
probable positions of electrons (r,,r,) are found by maxi-
mizing the absolute value of the wave function with respect
to coordinates r; and r;:

max|W(r;,rp)] = rp,r;. ©)

r|,ry
One should note that |¢,(r)|? is not normalized to one when
integrated over the two-dimensional space because it de-
scribes the electron at position (x,y) on the condition that the
other electron is fixed at (xz, y;). Instead, |¢.(r)|? is normal-
ized so that it equals one when x=x,,y=y,. Using the con-
ditional single-particle wave function we can study the con-
ditional density |¢,(r)|*> and the phase 6,(r).

To illustrate how the properties of the many-body wave
function can be examined with the conditional single-particle
wave function, we compare interacting two-body conditional
densities to noninteracting two-body densities in Fig. 3. The
noninteracting two-body density is the same as the single-
particle density (up to a normalization). We call it the one-
body density hereafter. We plot the one-body, two-electron
singlet (S=0) and two-electron triplet (S=1) conditional
single-particle densities along the x-axis. The other electron,
in the two-electron systems, is fixed at the most probable
position (x) on the right-hand side of the x-axis.

Figures 3(a) and 3(b) show conditional densities of the
single parabolic QD at B=1 and 8 T magnetic fields. The
one-body density is located at the center since no correlation
effects push it towards the edges of the dot. The peak of the
triplet state is found further at the edge of the dot than the
singlet peak since the Pauli exclusion principle ensures that
the electrons of the same spin are pushed further apart than
the electrons with the opposite spins. Notice that the condi-
tional density of the triplet state goes to zero where the other
electron is fixed, just before x=20 nm, whereas in the singlet
state there is a finite probability to find the electron around
the point of the fixed electron.

Figures 3(c) and 3(d) show the same data for L,=20 nm
two-minima QDM. In high magnetic fields and at large dot-
dot separations the difference between singlet and triplet
densities reduces. In QDMs, with a sufficiently large distance
between the dots and in high magnetic field also the one-
body density localizes into the individual dots [see Fig. 3(d)].

III. PARABOLIC TWO-ELECTRON QUANTUM DOT
(L=0)

We start our analysis from the single parabolic quantum
dot. The two-electron parabolic QD is studied extensively in
the literature but presenting results here serves as a good
starting point for understanding properties of quantum dot
molecules.

A. Energy levels

Energy levels of the parabolic QD are plotted in Fig. 4 as
a function of magnetic field. Figure 4(a) shows noninteract-
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FIG. 3. One-body density (dotted line), two-
body spin-singlet state (dashed line), and two-

= body spin-triplet state (solid line) along x axis.
One of the electrons is fixed at the most probable
position in the x axis (x*) and the conditional
density is plotted for the other electron (|¢,.(r)[?

=|\I,S|:(X’y)’(X*’O)]|2/|\PS[(_X*30) ’(x*’o)]P).

-25 50
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25 50 The peaks on the left-hand side also indicate the
most probable position, therefore by reflecting
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the peak position to the right-hand side of the x
axis one can perceive the position of the fixed
electron. (a) and (b) show the densities of a para-
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Sl )
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bolic QD at two different magnetic field values
(B=1 and 8 T), (c) and (d) represent a two-
minima QDM with L,=20 nm. The confinement
potential, V., is plotted with gray color on each
figure.

0
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ing two-body energy levels, (b) the ten lowest levels for
two-body spin-singlet states (S=0), and (c) for two-body
spin-triplet (S=1) states. In (d) three lowest singlet and trip-
let levels are shown in the same plot. The noninteracting
spectrum is obtained by occupying two electrons in the
Fock-Darwin energy levels. The first eigenvalue at zero field
equals two times (N,=2) the confinement potential [%w,
=3 meV, E,(B=0)=3+3=6 meV] and the second level rep-
resents one electron in the lowest Fock-Darwin level and the
other electron in the next one [E,(B=0)=3+6=9 meV].
Many noninteracting energy levels are degenerate, also as a
function of magnetic field. (In a less symmetric confinement,
the degeneracies are lifted.) Due to degeneracies, only six
levels are seen in Fig. 4(a). If the interactions are included,
the spectra become much more complicated and many more
level crossings are observed. One can also see how the en-
ergy scale is modified. In the spin-singlet spectra the ground
state energy is almost doubled if the Coulomb interaction is
included.

To see the crossing singlet and triplet states more clearly,
we plot the three lowest energy levels of spin singlet (dashed
line) and spin triplet (solid line) in Fig. 4(d) up to B=6 T. In
a weak magnetic field the ground state of the two-electron
QD is spin-singlet (S=0), which changes to spin-triplet (S
=1) as the magnetic field increases and then again to singlet
and finally to triplet [at B~6.3 T, not visible in Fig. 4(d)].

B. Singlet-triplet splitting and magnetization

In Fig. 5(a) we plot the energy difference of the lowest
triplet and singlet states up to B=8 T. Altering singlet and
triplet states are also seen in higher magnetic fields with a
decreasing energy difference between the states. However, if
one includes the Zeeman term, the triplet state is favored
over the singlet state at high B. Therefore the system be-
comes spin polarized.

The transitions between the states can also be examined
from the magnetization curves plotted in Fig. 5(b). The non-

22, 22
16l (@) (b) (c)
20| /4 20
14| /
18; 18|
T o6 : e
10|
14 / 14|
™ ™
O 12 O 12 O
6 . . .
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 1 2 3 4 5 6
B [T] B [T] B[T] B[T]

FIG. 4. (Color online) Ten lowest energy levels of the parabolic QD (L,=0, L,=0) as a function of magnetic field of (a) noninteracting
two-body, (b) two-body singlet state (S=0), and (c) two-body triplet state (S=1). Some of the states in (a) are degenerate. (d) Three lowest
energy levels of singlet (dashed line) and triplet (solid line) as a function of magnetic field up to B=6 T for the parabolic QD (L,=L,
=0). In (b) the first singlet ground state corresponds to angular momentum m=0 which changes to m=2 at B~2.7 T. In (c) the first triplet
ground state is m=1 and it changes to m=3 at B~5.8 T. In (d) the first ground state equals to m=0 singlet, then the ground state is m
=1 triplet followed by m=2 singlet and m=3 triplet, where the latter is not visible as a ground state in (d). Zeeman energy is included in the

triplet energies (E,=-2 X 12.7B[T] ueV in GaAs).
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FIG. 5. (Color online) Triplet-singlet energy difference in (a) and magnetization in (b) for the parabolic QD (L,=L,=0). The lower curve
in (a) shows the singlet-triplet splitting with Zeeman energy included. The smooth curve in (b) represents the Vmagnetization of two
noninteracting electrons and the other curve shows the magnetization for two interacting electrons. At low magnetic field values, the ground
state is the angular momentum m=0 singlet, which shows as positive values in the triplet-singlet energy difference of (a) and as a smooth
curve in (b). When the first transition from m=0 singlet to m=1 triplet occurs triplet-singlet energy difference changes its sign from positive
to negative and there appears a peak in magnetization. Change of m=1 triplet to m=2 singlet and from m=2 singlet to m=3 triplet appear
in the same way as peaks in magnetization and changes of sign in triplet-singlet splitting. Magnetization is given in the units of effective

Bohr magnetons ,=ef/2m" (uy=0.87 meV/T for GaAs).

interacting magnetization is a smooth curve as no crossings
are present in the lowest energy level. The orbital angular
momentum in the noninteracting two-electron ground state
does not change, and thus only the diamagnetic effects are
seen in the magnetization. The noninteracting electrons have
a smaller spatial extent of the wave function compared to the
interacting electrons. Therefore, at low fields, when the re-
sponse is purely diamagnetic, the magnetization curve of in-
teracting electrons has a lower absolute value in Fig. 5(b).
The magnetization curve of interacting electrons shows an
abrupt increase of the otherwise smooth curve whenever two
levels cross [see also Fig. 4(d)]. The peaks in magnetization
are solely due to interactions.

C. Wave function analysis and vortices

We will now analyze the two-body wave functions and
study in more detail singlet-triplet transitions in the single
QD. The first singlet-triplet transition can be understood with
the simple occupation of the lowest single-particle states: In
the singlet state the two electrons occupy the lowest energy
eigenstate with opposite spins (S=0). As the magnetic field
increases, the energy difference between the lowest and the
second lowest single-particle levels decreases. [See noninter-
acting energy levels in Fig. 4(a)]. At some point the ex-
change energy in the spin-triplet state becomes larger than
the energy difference between the adjacent energy levels.
Thus the singlet-triplet transition occurs and the adjacent
eigenlevels are occupied with electrons of parallel spins
(S=1).

However, the true solution of the two-electron QDM is
much more complicated than the occupation of single-
particle levels and inclusion of exchange energies. Interac-
tion between the electrons changes the situation drastically.
This can already be seen by comparing the single-particle
energy levels of Fig. 4(a) to singlet and triplet energy levels
in (b) and (c). As a signature of complex many-body fea-

tures, many singlet-triplet transitions are seen as a function
of B. There are two trends competing in the ground state of a
quantum dot when the magnetic field increases. The mag-
netic field squeezes the electron density towards the center of
the dot and the Coulomb repulsion of electrons increases at
the same time as the electron density is forced to a smaller
volume. At some point it is favorable to change to a higher
angular momentum ground state, which pushes electron den-
sity further apart and reduces the Coulomb energy. Therefore
as a function of the magnetic field a series of different angu-
lar momentum states are seen.

The altering singlet and triplet states can also be under-
stood in terms of composite particles of electrons and at-
tached flux quanta.*” The starting point for understanding the
ground state changes and flux quanta is to consider the two-
electron parabolic QD (as discussed in this section), which
has an exact solution for the wave function of the form

V=(x,p+ iy12)mf(712)e_(r%+r%)/2’ (10)

where x1,=x; =X, y12=Y,=Y2, and r,=|r;—r,| are the rela-
tive coordinates of the two electrons, m is the relative angu-
lar momentum, and f is a correlation factor.'>*° The zeros of
the wave function (vortices in relative coordinates) are
placed on zj,=x1,+iy;,=0 with a winding number given by
the relative angular momentum m. In the first S=0 state the
relative angular momentum of electrons is zero (m=0).
When the magnetic field increases the ground state changes
to spin triplet S=1, where the relative angular momentum of
electrons equals one (m=1) and in the second singlet state
m=2, and so on. With increasing magnetic field the relative
angular momentum of electrons increases and altering singlet
and triplet states are seen (if the Zeeman term is excluded).
The transitions occur because in the states with large m the
Coulomb repulsion becomes smaller at the cost of higher
confinement and kinetic energies. As the increasing magnetic
field squeezes electrons to a smaller area, it is favorable to
move to larger m to minimize the total energy. One should
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FIG. 6. (Color online) (a)—(e) Contours of conditional density |,(x,y)|> and phase of the conditional wave function 6,.(x,y) in grayscale
for parabolic QD (L,=L,=0). (White equals 6,=0 and darkest gray §,=2). Magnetic field value and the spin type are plotted on top of each
figure. The plus sign (+) indicates the position of the fixed electron and small circles indicate the positions of the vortices. In (f) contours
of total electron density of the three-vortex triplet state are plotted in the background and positions of the vortices are solved when the fixed

electron is in three different positions. The fixed electron is marked with the plus sign and vortices with circles. The most probable position

is marked with a star, on the left-hand side for clarity.

note that with even m the spatial part of the total wave func-
tion is symmetric and therefore the spin part should be anti-
symmetric (S=0). With odd m the spin part is symmetric
(S=1).

When the angular momentum increases, the increased ro-
tation induces vortices in the system. As we have a many-
body system, the rotation is a correlated motion of electrons
and can be studied in the relative coordinates of electrons.
Vortices can be found by locating the zeros of the wave
function and studying the phase of the wave function when
going around each of the zeros. As the vortices are seen in
the relative coordinates, and are not visible in the density, we
examine the conditional single-particle wave function ,(r)
[of Eq. (8)], where one electron is fixed in the most probable
position (on the x axis, the system is circular symmetric).
The vortices are seen in the zeros of .. When the phase part,
0., is integrated around a closed path encircling the zero, we
obtain the winding number of the vortex [$6,(r)dr=m21].

In a parabolic two-electron QD vortices are automatically
attached on top of the electrons, where the relative angular
momentum m equals the winding number of a vortex. In a
less symmetric potential the center of mass and relative vari-

ables do not decouple and one would expect more compli-
cated structures as can be seen in later sections. The simple
form of the wave function in Eq. (10) is due to separation of
the center of mass and relative coordinates in the parabolic
confinement.

Calculated vortices and conditional densities of the single
QD are shown in Fig. 6. The contours show the conditional
electron density, |¢,|%, and the grayscale background marks
the phase of the conditional wave function, 6., where the
white color equals #.=0 and the darkest gray 6,=2. The
positions of the vortices are marked with circles (O), and the
other electron is fixed at the most probable position (r;)
shown with a plus sign (+). The lines of dark gray and white
borders correspond to a sudden phase change of 2 if the
line is crossed. The number of flux quanta attached to the
electron (or the winding number of a vortex) can be deter-
mined by going around the fixed electron position and cal-
culating the total phase change (or counting the lines crossed
in the figure).

In Fig. 6(a) the phase is constant (no vortices and no
relative angular momentum) and the probability density of
the other electron is located on the left side because of the
Coulomb repulsion. In (b) we find one vortex as one border
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of white and gray is crossed when the fixed electron is en-
circled. In (c) we find two vortices, in (d) three vortices, and
in (e) four vortices. Figure 6(a) corresponds to the first sin-
glet with relative angular momentum m=0, (b) shows the
first triplet with m=1, (c) the second singlet with m=2, and
(d) the second triplet with m=3. Figure 6(e) would be the
third singlet state but this is not a ground state if the Zeeman
term is included. The conditional density shows how the
electron localizes to a smaller area when the magnetic field
increases. We also notice the enhancement of interaction at
high B where the density contours are contracted compared
to the low-field conditional densities.

The conditional density and phase are much more sensi-
tive to the basis size than, e.g., energy eigenvalues. In a
parabolic QD the vortices should appear exactly on top of
the fixed electron. However, in the two-, three- and four-
vortex plots, in Fig. 6, the vortices are slightly displaced
from the fixed electron position. The finite basis expansion
does not result in an exactly correct vortex picture. On the
other hand, the problem is not very serious because the error
in energy is not large and vortex positions are not experimen-
tally observable and we also get correct winding numbers
(angular momentum) if the pinned electron is encircled with
a large enough radius.

Vortex dynamics can be studied if we change the position
of the fixed electron. In Fig. 6(f) we show the positions of
the vortices in three different places of the fixed electron for
the three-vortex triplet state. The total electron density is
shown in the background [see also Figs. 7(g) and 7(h)]. In a
parabolic QD the vortices should be on top of the fixed elec-
tron no matter where it is pinned. Our calculations result
wrongly in a small offset of vortices from the fixed electron.
Even if the vortices are not exactly on top of the fixed elec-
tron, and actually have a greater offset at greater distances
from the origin, they are seen to follow the fixed electron if
its position is changed. This is a signature of the composite
particle nature of electrons and vortices.

D. Total electron density and the most probable position

In Fig. 7 we plot ground state total electron densities of
the parabolic QD. The magnetic field values are the same as
in Fig. 6 except that the four-vortex solution is not plotted
since it is not a ground state. The range of both x and y axes
and also the density in the z axis changes from (a) to (g)
whereas in the contours the range of x and y is kept fixed.
Dark regions in the contours mark high density and bright
regions low density. As a function of magnetic field there
forms a minimum in the center of the dot as the Coulomb
repulsion forces electrons further apart. Note that even if
there is a minimum in the total electron density, this is not a
vortex. Vortices, in the composite particle picture, follow
moving electrons and are seen in the relative coordinates of
electrons. They describe the correlated motion of electrons
and are not visible in an averaged-out quantity such as den-
sity.

Another way to study the nature of the changing ground
states is to plot the most probable position [see Eq. (9)] as a
function of magnetic field. Figure 8 shows the most probable
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position (r”) for both spin-singlet and spin-triplet states as a
function of magnetic field. Gray background color indicates
the region of magnetic field where the singlet is a ground
state and white background color corresponds to magnetic
field regions where the spin triplet is a ground state. Each
jump in the curves corresponds to a change in the angular
momentum. When the singlet changes from the m=0 to m
=2 state at B=2.7 T the most probable position jumps to a
higher value as well. See also energy level crossings in Fig.
4(b). The outward relaxation, due to the increase of angular
momentum, can be also seen in the density. Similar depen-
dence is seen for the triplet state. First the most probable
position decreases due to contracting electron density and
then, at some point, it is favorable to move to a higher an-
gular momentum state which relaxes the electron density
outwards. In higher magnetic field we would see a sequence
of transitions between increasing angular momentum states.

IV. TWO-MINIMA QUANTUM DOT MOLECULE
(L, #0)

A. Singlet-triplet splitting as a function of L

In this section we study two laterally coupled quantum
dots. In a two-minima QDM, or double dot, we study the
changes in the ground state spectrum when two QDs, on top
of each other, are pulled apart laterally. In Fig. 9(a) the en-
ergy difference of the lowest triplet and singlet states is plot-
ted as a function of the inter-dot spacing and magnetic field.
At L=0 we have a single parabolic QD and the curve coin-
cides with Fig. 5(a). When L# 0 we have a double dot. Let
us now examine some general trends of the triplet-singlet
energy difference as a function of dot-dot separation. At
small magnetic field the ground state is a spin singlet, then
triplet, and again singlet as in the single QD, but the transi-
tion points change and the energy differences are smaller at
greater distances between the dots than in the single QD. The
transition points and regions of singlet and triplet states are
plotted in Fig. 9(b). We can also note that all transition points
are shifted to lower B at large distances between the dots. If
the Zeeman energy, that lowers the triplet energy, is included
in the total energy the second singlet state disappears at
greater L as can be seen in Figs. 9(c) and 9(d). The second
singlet is only seen in a small region with very closely
coupled QDs (L=2.5 nm). Therefore subsequent singlet
states after the first one are not seen in the double dot if L
=2.5 nm. Similar results are seen in anisotropic QDs where
the parabolic confinement of a single QD is elongated con-
tinuously to a wirelike confinement.?’

B. Energy levels of L,=5 nm double dot

We choose one distance between the dots, L,=5 nm, to
study the properties of the double dot in more detail. We plot
energy levels, singlet-triplet splitting, magnetization, vorti-
ces, the most probable position, and total electron density of
this double dot in Figs. 10-14. The energy levels in Fig. 10
are now modified, compared to the parabolic QD, due to the
lower symmetry of the confinement potential. The circular
symmetry is no longer present. The lower symmetry shifts
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and splits degenerate levels. The noninteracting levels, in
Fig. 10(a), split at zero magnetic field and there is also a
small anticrossing of levels, just barely visible in the figure.
Also degenerate levels of the single QD [see Fig. 4(a)] are
now slightly displaced in energy, which is mostly seen as
thicker lines in Fig. 10(a). In the interacting spectra, (b) and
(c), we see many anticrossings. Also the nature of the lowest
level does not change abruptly with crossing levels as in the
single QD, but instead we see anticrossing levels. For ex-
ample, there are clear anticrossings in the double dot singlet

PHYSICAL REVIEW B 72, 205329 (2005)

B=05T,S=0

FIG. 7. Total electron density of the ground
state at different magnetic field values for the
parabolic (L,=L,=0) QD. In the left column are
densities in 1/nm? and on the right column are
contours of the densities. Dark regions in the con-
tours mark high density and brighter regions low
density. Notice that in the densities the scale in
the x and y axes is changing and the height of the
peak is increasing with magnetic field. The range
of axes in the contour plots is kept fixed. The
magnetic field value and the spin type of the
ground state are plotted above each subfigure.

states of Fig. 10(b) whereas states cross in the singlet state of
the parabolic QD of Fig. 4(b).

We plot three lowest singlet and triplet energy levels in
the same figure to see the transition points and energy differ-
ences between the states more clearly [Fig. 10(d)]. The
ground state is a singlet at small B, also in the double dot,
and later it changes to triplet. The Zeeman term lowers the
triplet energy enough so that no second singlet (ground) state
is observed at higher B, even though the singlet energy be-
comes very close to the triplet energy at B~5 T, as can be
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FIG. 8. (Color online) Most probable position in nm of singlet
(§=0) and triplet (S=1) states for the parabolic (L,=L,=0 nm)
QDM. The magnetic field region where singlet is a ground state is
marked with gray background color.

seen in Fig. 10(d). The interesting anticrossing of spin singlet
between B=2 and 3 T is now an excited state as the triplet is
the ground state. We also find anticrossing ground state lev-
els in the spin triplet around B~5.5 T, but the repulsion of
levels is not so clear at high B.

10
4 6
B[T]

g 0 L [nm]
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C. Singlet-triplet splitting and magnetization of L,=5 nm
double dot

The energy difference between the lowest triplet and sin-
glet states as a function magnetic field in the L ,=5 nm
double dot is plotted in Fig. 11(a), and the magnetization in
Fig. 11(b). The sharp jump in the magnetization corresponds
to the singlet-triplet transition. Even if the system is not cir-
cular symmetric, and angular momentum is not a good quan-
tum number, there is an increase of the expectation value of
angular momentum at the transition. We can clearly see that
the magnetization increases suddenly at the transition point.
Around B~5.5 T there is a bump in the magnetization. This
is exactly at the anticrossing point of the triplet state. There-
fore the symmetry of the triplet state changes or the magnetic
moments of the electrons change. This time it is not seen as
an abrupt change but as a continuous one. Similar magneti-
zation curves are seen in asymmetric QDs with a correct
deformation from the parabolic confinement to a more wire-
like confinement.?’

D. Vortices of L,=5 nm double dot

In the case of QDMs the states cannot be identified with
angular momentum since it is not a good quantum number.
However, we can still study vortices and conditional density
of the double dot. We fix one electron at the most probable

S=1

)
BT

FIG. 9. Triplet-singlet energy difference (AE=E'"—E'!) as a function of magnetic field in the two-minima quantum dot molecule. The
energy difference is plotted as a function of dot-dot separation and magnetic field in (a) without Zeeman energy and in (c) with the Zeeman
energy included (AE=E!T+E,—E'!). In (b) and (d) the ground state regions of the singlet and triplet states are plotted as function of B and

L, without and with Zeeman energy, respectively.
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FIG. 10. (Color online) Energy levels of L,=5, L,=0 two-minima QDM. See Fig. 4 for details.

position at r'=(x",0) and study the conditional single-
particle wave function

_ W).(0)]
‘PS[(_ X*’O)’(X*’O)] .

The most probable position of the two-minima QDM lies
always on the x axis. In Fig. 12(a), at low B, no vortices are
found and the phase is constant. Contours are again localized
to the left of the fixed electron having the maximum at
(=x",0). The conditional density in a double dot is more
localized compared to the conditional density of a single QD
in Fig. 6(a). The next plot, Fig. 12(b), shows data for the
triplet at B=3.0 T with one vortex and (c) shows the singlet
state at B=5.7 T with two vortices, (d) the triplet at B
=7.5 T with three vortices, and (e) the singlet at B=8.2 T
with four vortices. The singlet state is not a ground state after
the first singlet-triplet transition which means that two- and
four-vortex solutions in (c) and (e) are only found as excited
states.

In the double dot vortices appear in the dot similarly as in
the single QD. The vortices, on the other hand, are not ex-
actly on top of the fixed electron, and they can be found at
considerable distances from the fixed electron, as in Fig.
12(e). Looking at the ground state at B=7.5 T in Fig. 12(d)
in more detail, it is interesting to see that the vortices are
seen in the vicinity of the fixed electron even if the condi-
tional density is localized closer to the other dot and contour
lines are rather circular though flattened in the x direction
due to Coulomb repulsion. Despite the fact that the density
of an electron is rather localized to one of the dots the two

Pe(x,y) (11)

electrons move in a strongly correlated way in the double
dot. The dynamics of vortices can be studied by changing the
position of the fixed electron. In Fig. 12(f) the electron is
fixed in three different positions for the B=7.5T triplet
ground state. The total electron density is plotted in the back-
ground. The vortices follow the fixed electron which leads us
to conclude that also in a nonsymmetric potential flux quanta
and electrons form composite particles. It is surprising to
find composite-particle-like solutions in the nonparabolic
symmetry as well.!?

The vortices are not exactly on top of the fixed electron.
This may be in part due to the finite-size basis expansion, but
on the other hand there is no reason why they should be
exactly on top of the fixed electron. Interesting vortex clus-
ters of a six-electron parabolic QD are studied in a recent
article (Ref. 42) and also in elliptical and rectangular QDs in
Ref. 45. In the double dot, the vortex patterns change con-
tinuously, where always an extra pair of vortices approach
the fixed electron from minus and plus infinity from the y
axis lying in the same vertical line with the fixed electron as
in Figs. 12(c)-12(e).

E. Most probable position and total electron density of L,
=5 nm double dot

The most probable position (r”") for the lowest singlet and
triplet states is plotted in Fig. 13. Due to the anticrossing
levels also the singlet and triplet most probable positions
change continuously. A similar outward relaxation of the
conditional density in the double dot is associated to the
approaching vortices as was seen for the parabolic QD asso-

(b)

A E [meV]

-0.2f M—\ e
—0.4} 11 ]

-0.61

FIG. 11. (Color online)
Triplet-singlet energy difference
(a) and magnetization (b) for L,
=5, Ly=0 two-minima QDM. See
Fig. 5 for details.
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FIG. 12. (Color online) (a)-(e) Contours of conditional densities |#.(x,y)|> and phase of the conditional wave function 6,.(x,y) in
grayscale for L,=5, L,=0 two-minima QDM. See Fig. 6 for details. (f) Contours of tozal electron density of the three-vortex triplet state are
plotted in the background and positions of the vortices with the fixed electron in three different positions.

ciated with the sudden change in the angular momentum
state.

Ground state densities at three different magnetic field
values are shown in Fig. 14. They show how the electron
density localizes into the two minima as the magnetic field

Lx=5,Ly=0

T

E
£17
16
o
0 2 4 6 8
B [T]

FIG. 13. (Color online) Most probable position in nm of singlet
(5=0) and triplet (S=1) states for the two-minima (L,=5, L,
=0 nm) QDM. Singlet ground state magnetic field region is marked
with gray background color.

increases. The interacting density shows two peaks also in
the low-field regime whereas the noninteracting density still
has just one maximum [see the dotted line in Fig. 3(c)].

V. SQUARE-SYMMETRIC FOUR-MINIMA
QUANTUM-DOT MOLECULE (L, =L, #0)

In this section we study two electrons in lateral four-
minima quantum-dot molecules. The minima are arranged in
the way that they form a square in the lateral direction.

A. Singlet-triplet splitting as a function of L

We study singlet and triplet states as a function of mag-
netic field and dot-dot separation. Figure 15(a) shows alter-
ing singlet and triplet states as a function of magnetic field.
More frequent singlet-triplet changes are seen at greater
separations between the dots (large L). Also notable is the
large energy difference of the second singlet state to the trip-
let state. The second singlet also persists as a ground state to
the greatest studied separation L, which is not true in the
double dot, if the Zeeman energy is included [Fig. 15(c)]. In
all studied separations L the magnetic field evolution of the
Zeeman coupled four-minima QDM [Figs. 15(c) and 15(d)]
follows the same pattern. At small magnetic field values the
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FIG. 14. Density of the ground state at different magnetic field values for the two-minima (L,=35, L,=0 nm) QDM. See Fig. 7 for

details.

ground state is singlet, then triplet, and again singlet in a
small magnetic field window before the ground state changes
to triplet permanently. However, with large separations L the
system becomes spin-polarized at lower magnetic field val-
ues, i.e., the border line of the second singlet and second

triplet curves towards the low-field region with increasing L.

We will now analyze the rapid changes of the singlet and
triplet states of a four-minima QDM. Singlet-triplet (and
triplet-singlet) transition points shift to lower magnetic field
values at greater L, where the area of the QDM (A) is effec-
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FIG. 15. Triplet-singlet energy difference (AE=E!T—E'!) as a function of magnetic field in the square-symmetric (L:szLy) four-

minima quantum dot molecule. See Fig. 9 for details.

tively larger. If the transitions occur at effectively the same
values of the magnetic flux (®=BA), the transitions should
be seen at lower B when the area is larger. This explains why
the border lines between singlet and triplet states curve to-
wards lower B at greater separations between the dots.

The second singlet is seen as a ground state in the Zeeman
coupled system even at the very large distance of L=20 nm
where the perturbation from a purely parabolic potential is
clear. However, in this type of square- or ring-like potential
spatially symmetric states (singlet) are energetically more fa-
vorable than in elongated potentials (double dot) where in
general the spatially antisymmetric states (triplet) are favored
without paying too high a price in Coulomb energy. Of
course, as all energy scales are quite equal, the ground state
is a delicate balance between kinetic, confinement, and Cou-
lomb energies as a function of magnetic field.

B. Energy levels of L,=L,=5 nm QDM

We will now focus on the Lx=Ly=5 nm four-minima
QDM. The energy levels of noninteracting two-body, singlet
and triplet states are plotted in Figs. 16(a)-16(c), respec-
tively. In the square-symmetric four-minima QDM the
ground state levels do not anticross as in the double dot,
instead crossing ground states of the same spin state are seen,
as in the single QD. However, the four-minima QDM is not

circular symmetric and anticrossings are still seen in the
higher energy levels, which is not the case with a circular
symmetric parabolic QD. Notice that in the noninteracting
spectra in Fig. 16(a) many levels are degenerate at B=0 for
the four-minima QDM, whereas in the double dot the zero-
field degeneracies are mostly lifted, see Fig. 10(a). Yet, many
levels that are degenerate in the single QD, Fig. 4(a), as a
function of magnetic field, are slightly split in the noninter-
acting energy levels of a four-minima QDM.

The singlet and triplet energies can be seen in the same
plot in Fig. 16(d). The energy levels of the four-minima
QDM in Fig. 16(d) look very similar to single QD energy
levels of Fig. 4(d). Even if the absolute values of energies
and transition points are different, the only notable differ-
ences between parabolic QD and four-minima QDM are the
small bending at zero field of the third triplet level, near £
~12.9 meV, and small anticrossing of the uppermost triplet
level at B~1.3T.

C. Singlet-triplet splitting and magnetization of L,=L,=5 nm
QDM

The energy difference between the lowest triplet and sin-
glet and the magnetization are plotted in Fig. 17. Now, as no
anticrossings of ground states are present, the triplet-singlet
energy difference shows peaks. In the magnetization we also
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FIG. 16. (Color online) Energy levels of L,=L,=5 nm four-minima QDM. See Fig. 4 for details.

observe sharp peaks whenever two ground states cross. Simi-
lar results are seen in a square quantum dot with a repulsive
impurity of Ref. 38 where the magnetization of two electrons
in the dot shows sharp transitions since no anticrossings in
the ground states are present. On the other hand, in a square
QD with eight electrons slightly rounded magnetization
curves are seen.”® Therefore, if the circular symmetry of the
confinement is broken, the magnetization depends on the
symmetry of the confinement but also on the number of the
electrons in the QD. It may not be straightforward to draw
any conclusion about the underlying potential from the mag-
netization curves. Anticrossings, on the other hand, are clear
signatures of a broken circular symmetry.

D. Vortices of L,=L,=5 nm QDM

We can identify the changes in the magnetization to the
increasing number of vortices in the two-electron QDM or to
the increase of the expectation value of relative angular mo-
mentum of the electrons. Vortex patterns and conditional
densities are shown in Fig. 18. The most probable position is
now found from the line connecting two minima diagonally.

_ ‘PS[(x’y)’(X*’y*)] x* :y*
V(-2 =y )T '

At B=0.7T in Fig. 18(a) the conditional density is spread to
the area of three unoccupied dots with a peak in the further-

.(x,y) (12)

(@)

AE=E"-EM

A E [meV]

*

most dot on the diagonal from the fixed electron. At high
magnetic field the density becomes more localized closer to
the most distant minimum, in the diagonal from the fixed
electron. However, the contours show that the conditional
density is not as circularly symmetric as in a double dot, but
actually resembles more the conditional density of the single
parabolic QD. The peak in the confinement potential at the
origin seems not to affect the conditional density consider-
ably when compared to the single QD. At high B the Cou-
lomb repulsion forces electron density to the outer edges of
the confinement, which might not result in very different
results when compared to the single dot. However, the dis-
tance L,=L,=5 nm in the confinement is not particularly
large and the perturbation from the parabolic confinement is
not very large. On the other hand, altering singlet and triplet
states persist to the greatest studied distance (L=20 nm) be-
tween the dots of L=20 nm where the perturbation from the
parabolic confinement is clear.

The vortices appear in the four-dot QDM sequentially as a
function of magnetic field. At low B the ground state is a
singlet with no vortices, then a triplet with one vortex, a
singlet with two vortices, and then a triplet with three vorti-
ces. The singlet with four vortices in Fig. 18(e) is an excited
state as the system becomes spin polarized after the two-
vortex singlet state. The vortices are located in the diagonal
going through the fixed electron position, see Figs.
18(c)-18(e). The vortices seem to be further away from the

0
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FIG. 17. (Color online) Triplet-singlet energy difference in (a) and magnetization in (b) for L,=5=L,=5 QDM. See Fig. 5 for details.
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FIG. 18. (Color online) (a)—(e) Contours of conditional densities |.(x,y)|> and phase of the conditional wave function 6.(x,y) in
grayscale for the L,=5, L,=5 four-minima QDM. See Fig. 6 for details. (f) Contours of fotal electron density of the three-vortex triplet state
are plotted in the background and positions of the vortices with the fixed electron in two different positions.

fixed electron (in the case of more than one vortex) than in
the single QD. This is also true in the double dot. This could
be identified as repulsion between the vortices but it is diffi-
cult to assess since the length scales are different due to
different confinement strength and also the basis causes some
errors. However, with six electrons in a parabolic confine-
ment one can see a clear repulsion between the vortices.*?

Vortex dynamics of the three-vortex solution is studied by
changing the position of the fixed electron in Fig. 18(f). Total
electron density of the same state is plotted in the back-
ground of Fig. 18(f). Vortices are seen to follow the fixed
electron also in the four-minima QDM. However, in the four-
minima QDM the vortices are further away from the fixed
electron as the distance from the origin increases.

E. The most probable position and density of the
L.=Ly,=5 nm QDM

The most probable positions of the lowest singlet and trip-
let states of the four-minima QDM (Fig. 19) show very simi-
lar behavior as the single QD. Only the most probable posi-
tions are on average roughly 2 nm greater at all field
strengths compared to the single QD (size of the QDM is
larger compared to single QD). Otherwise continuously de-
creasing r” shows a jump when the lowest singlet (or triplet)
state changes.

Ground state densities and contours are plotted in Fig. 20.
Starting from a rather flat density at low fields, a hole begins

to form in the center as the magnetic field is increasing. The
electron density localizes into a narrowing ring around the
origin. However, compared to the parabolic QD, there are
peaks forming in the four corners of the density, instead of a
smooth density ring. Also the density looks more squarelike
in all of the contours.

Lx=Ly=5

—— 'r* of S=0
—— r* of S=1 ||

14 N I‘xJ

4
B[T]

FIG. 19. (Color online) Most probable position in nm of singlet
(§=0) and triplet (S=1) states for the four-minima L,=L,=5 nm
QDM. Singlet ground state magnetic field region is marked with
gray background color.
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B=071,5=0 B=07T,S=0

FIG. 20. Density of the ground
state at different magnetic field
values for the four-minima L,
=L,=5 nm QDM. See Fig. 7 for
details.
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FIG. 21. Triplet-singlet energy difference (AE=E!T—E'!) as a function of magnetic field in the rectangular-symmetric four-minima
quantum dot molecule. L, is fixed to 5 nm and L, is varied from 0 to 20 nm. Therefore at L,=0 we have L,=5 nm double dot and at L,
=5 nm it is the square-symmetric four-minima QDM. The energy difference is plotted as a function of L, and magnetic field in (a) without

Zeeman energy and in (c) with the Zeeman energy included (AE=E!"+E,—E'}). In (b) and (d) the ground state regions of the singlet and
triplet states are plotted as a function of B and L,, without and with Zeeman energy, respectively.

VI. RECTANGULAR FOUR-MINIMA QUANTUM DOT A. Singlet triplet splitting as a function of L, for the fixed
MOLECULE (L,#L,#0) L,=5 nm rectangular QDM

The triplet-singlet energy difference of the rectangular
In this section we examine the triplet-singlet energy dif- QDM is plotted in Fig. 21. The distance between the minima
ference, energy eigenlevels, magnetization, vortices, the in the x direction is fixed while the distance in the y direction
most probable positions, and densities of four-minima QDM is varied. We set L,=5 nm and vary L, from zero to 20 nm.
with rectangular positioning of the QD minima in the lateral Therefore, at L,=0 we have a L,=5 nm double dot, and at
plane. L,=5 nm we have the L,=L,=5 nm square-symmetric four-

2

4 3
BI[T] B[T]

FIG. 22. (Color online) Energy levels of the L,=5, L,=10 nm rectangular four-minima QDM. See Fig. 4 for details.
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FIG. 23. (Color online)
Triplet-singlet energy difference
(a) and magnetization (b) in the
L.=5, L,=10nm rectangular
four-minima QDM. Magnetiza-
tion is given in the units of effec-
tive Bohr magnetons wu,=eh/2m".

8 8

minima QDM studied in the preceding section. The smooth
surface in Fig. 21 is due to anticrossing ground states simi-
larly as in the double dot. The anticrossings in the lowest
levels of the singlet and triplet states are again present if the
symmetry is distorted from a square to a rectangular symme-
try, see the energy levels in Fig. 22. The only sharp peaks in
Figs. 21(a) and 21(c) correspond to the rectangular symmet-
ric QDM at L,=L,=5 nm.

One can also see that as a function of magnetic field sin-
glet and triplet states do not change as rapidly as in the
square-symmetric four-minima QDM. Interestingly, the third
singlet region terminates around L,~15 nm. So at suffi-
ciently large distance between the two L,=5 nm double dots
the singlet state is no longer favorable even if the Zeeman
term is excluded. In the case of a double dot in Ref. 12 it was
not possible to say whether the second singlet state would
terminate at greater distances between the dots, but for two
double dots the third singlet region clearly terminates.

If the Zeeman term is included [Figs. 21(c) and 21(d)] the
second singlet state can only be observed in a small region
where the rectangular four-minima QDM is close to square
symmetry (near L,=5 nm). Actually the energy difference
has its maximum, as a function of L,, at the square symme-
try. If we follow the energy difference at zero magnetic field
as a function of L,, it first increases reaching the maximum at
L,=5 nm and then it decreases again when L, is increased.

The stability of the singlet states (and also triplet states) in
the square-symmetric QDM can be understood from the rela-
tively high energy of the triplet state (or singlet) near the
peak in AE. In the square symmetry the degenerate energy
levels at the crossing point are energetically very unfavor-
able. In rectangular symmetry degeneracies are lifted (anti-
crossings), which lowers the energy of the other spin type
and also reduces the energy difference, AE. Thus the energy
differences are always smaller in the rectangular symmetry
when anticrossings are present. The Jahn-Teller theorem
states that any nonlinear molecular system in a degenerate
electronic state will be unstable and will undergo a distortion
to form a system of lower symmetry and lower energy,
thereby removing the degeneracy.*® In a QDM, the system
cannot, of course, lower the symmetry of the external con-
finement spontaneously to lift the degeneracies, but the large
triplet-singlet energy differences in the square-symmetric
QDM can be understood via Jahn-Teller effect: If the sym-
metry is lowered, degeneracies are lifted and smaller triplet-
singlet energy differences are observed.

B. Energy levels of the L,=5, L,=10 nm QDM

We will now study the rectangular L,=5, L,=10 nm
QDM in more detail. Figures 22(b) and 22(c) reveal many
anticrossings in the interacting two-body spectra of the L,
=5, Ly:IO nm QDM, both in the ground states and also in
the excited states. Many features look similar as in the
double dot spectra in Fig. 10 but the anticrossing gaps are
bigger here due to the greater separations between the dots
(greater deviation from the circular symmetry). Figure 22(d)
shows singlet and triplet energy levels in the same plot. The
second singlet becomes very close to the triplet near B
=5 T, but the triplet remains the ground state.

C. Singlet-triplet splitting and magnetization of the
L.=5, L,=10 nm QDM

The energy difference of triplet and singlet states is plot-
ted in Fig. 23(a). The magnetization in Fig. 23(b) shows first
a sharp peak which corresponds to singlet triplet transition.
The next change is from the one-vortex triplet to the three-
vortex triplet and as these two states anticross we see a con-
tinuous increase of the magnetization before it starts to de-
crease again due to the contraction of the electron density. It
is interesting that after the bump the interacting magnetiza-
tion has very similar dependence on the magnetic field as the
non-interacting magnetization. At high enough magnetic
field the electrons are localized into individual double dots
and have single-particle properties and the spatial extents in
the interacting and noninteracting systems are not very dif-
ferent [see Eq. (6)]. However, the electrons may move in a
correlated way even if they are localized into one of the
double dots. One should remember that there is also the para-
magnetic part in the magnetization, but this is constant for a
given state, if the angular momentum is a good quantum
number, and does not depend on the magnetic field. Of
course, in a noncircular symmetry the paramagnetic magne-
tization may not be constant as a function of magnetic field.

D. Vortices of the L,=5, L,=10 nm QDM

The phase information and the conditional densities of the
rectangular four-minima QDM are shown in Fig. 24. The
most probable position lies now on the y axis. Another pos-
sibility would be to have the most probable position on a line
connecting the two minima diagonally. However, the other
double dot is left with just one electron and the distance of
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FIG. 24. (Color online) (a)-(e) Contours of conditional densities |.(x,y)|> and phase of the conditional wave function 6.(x,y) in
grayscale for the L,=5, L,=10 four-minima QDM. See Fig. 6 for details. (f) Contours of fotal electron density of the three-vortex triplet state
are plotted in the background and positions of the vortices with the fixed electron in three different positions.

L,=5 nm is so small that the single-particle density is not
localized to the minima of the double dot. So the most prob-
able position is in the y axis. In rectangular symmetry corre-
lations force the one electron to one of the double dots. With
small L,’s conditional density shows a peak at x=0 as in the
noninteracting two-body density in Fig. 3.

The conditional density becomes more localized as the
magnetic field increases. The vortices appear sequentially in
the QDM. The second and third singlet states [in Figs. 24(c)
and 24(e)] are not ground states as the system becomes spin-
polarized after the first singlet-triplet transition. There is
again a repulsion between the vortices. It is interesting to
note that in Fig. 24(e) the two more distant vortices are po-
sitioned much closer to the fixed electron when compared to
the double dot of Fig. 12(e). The white and dark regions near
the borders of Fig. 24(e) show the shades of phase bound-
aries of more distant vortices (not visible in the figure).

Vortex dynamics is studied in Fig. 24(f) for the three vor-
tex triplet (at B=6.5 T). The electron is fixed at three differ-
ent positions and the total electron density of the same state
is plotted in the background. One vortex, or Pauli vortex, is
always on top of the fixed electron and the two additional
vortices are symmetrically on the sides of the fixed electron.
As the fixed electron is moved from the origin to the direc-
tion of the positive y axis, the vortices aside become closer to
the fixed electron.

E. Total electron density and the most probable positions of
the L,=5, L,=10 nm QDM

Ground state electron densities in Fig. 25 show a localiza-
tion into two double dots as the magnetic field is increased.
If the densities would be rotated by 90° they would resemble
very much two-minima QDM (double dot) densities of Fig.
14. The smaller displacement (L,=5 nm) in the four-minima
QDM potential has a much smaller effect than the larger
displacement (Ly= 10 nm) because electrons localize into the
double dots (with L,=5 nm) separated from each other with
a distance d=2L,=20 nm. Therefore electron density of the
rectangular four-minima QDM effectively resembles that of
a two-minima QDM (double dot). This is true for the inter-
acting two-electron system.

The most probable positions of the lowest singlet and trip-
let states are shown in Fig. 26. Continuously changing r"
(i.e., no jumps) is due to anticrossing states where symmetry
of a state (and also r") changes continuously. The strong
suppression of the oscillations of r" at greater B is interest-
ing. At large magnetic field the electrons localize into distant
double dots and interaction effects (like changing angular
momentum states in a parabolic QD) have a smaller impact
on the properties of the two-electron system. The effect is
quite different for a parabolic QD and square-symmetric
four-minima QDM where the localization of the electron
density is not so strong due to the nature of the confinement
potential.
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FIG. 25. Density of the ground state at different magnetic field values for the L,=5, L,=10 nm rectangular four-minima QDM. See Fig.

7 for details.
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FIG. 26. (Color online) Most probable position in nm of singlet
(S=0) and triplet (S=1) states for the rectangular-symmetric four-

minima (L,=5, L,=10 nm) QDM. The singlet ground state (mag-
netic field) region is marked with gray background color.

VII. ANALYSIS OF THE RESULTS AND THEIR
RELEVANCE TO EXPERIMENTS

A. Role of symmetry in quantum dot confinement

We start our analysis of the data presented above from the
measurable quantities. One such observable is the total en-
ergy for ground and excited states as a function of the mag-
netic field, as well as the magnetization. To ease the com-
parison, these are collected in Fig. 27. The most striking
feature is that the data of the square-symmetric four-minima
QDM is very similar to the one of the single parabolic dot.
On the other hand, the data of the double dot resemble the
one of a rectangular four-minima QDM. The reason behind
the similarities of these pairs is the symmetry. The square-
symmetric and circularly symmetric cases have higher sym-
metries than the rectangular ones. One can study this in de-
tail by splitting the total Hamiltonian of Eq. (1) to two parts
as H=H,+H,, where H, is the Hamiltonian of the parabolic
case (L,=L,=0), and the impurity Hamiltonian H; contains
the terms from finite L, and L, values, see Eq. (3). If we now
have a high symmetry in the system, meaning L,=L,, one
can see that the H; does not couple the eigenstates of H,, that
have a different symmetry. On the other hand, in the case
with L, # L,, H,; has a lower symmetry and more of the sym-
metries of H, are broken. Due to this, states with different
symmetry are coupled. This leads to anticrossings in the en-
ergies as seen in Fig. 27, where also the crossings of the
high-symmetry cases are seen. One can estimate the strength
of the symmetry-lowering part from the anticrossing gap in
energy, as in the point where the energies would cross, one
has in the first approximation a Hamiltonian matrix:

E, E
H:( 0 5),
Es E

where E| is the energy at the middle of the gap, and 2E is
the width of the gap.

(13)
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The magnetization curve for the low- and high-symmetry
cases are also very different, see Fig. 27. A common feature
in all these cases is the sharp increase in magnetization at the
point where the total spin of the ground-state changes. On
the other hand, the low-symmetry anticrossings of the energy
result in smooth changes in magnetization, whereas the high-
symmetry data show sudden jumps.

These findings indicate that it is rather difficult to obtain
detailed information of the system based on the energetics
and the magnetization. The symmetry of the system can be
extracted, but not much beyond that. For larger particle num-
bers, more and more of the correlation effects can be cap-
tured by the mean-field level. The effective potential has, due
to the Hartree potential, a higher symmetry than the mere
external potential.’ This results in less details to both ener-
getics and the magnetization.

A similar role of the symmetry can be seen on the non-
measurable quantities, like the densities. On the other hand,
the vortices are more delicate. This is because they depend
linearly on the wave function, unlike densities and energies
that are second order.

B. Exchange of two spins

The idea of double dot spin-swap operations in quantum
computing'* lies in the coherent rotation of two initially iso-
lated spins. Starting with, say, spin-up electron in the left and
spin-down electron in the right dot: |1),||)z and rotating
spins to opposite order: | | );|T)x. These would be initial and
final states of the system. Coherent rotation between initial
and final states requires entangled _spin states like spin-
singlet  [S)=(|1).[)g=]1)/1)r)/\2 and  triplet  |T()
=(|1)2 Dr+1 102 1)r)/\2 whereas the other two triplet
states |T,)=|1).| )& and |T_)=||),|| )& are not conceivable
as they have identical spins. The states described above are
only for the spin-part of the wave function but of course the
spatial part, discussed extensively in this paper for singlet
and triplet eigenstates, must be modified along with the ro-
tation.

In the simplified Heisenberg picture, rotation depends
only on the singlet-triplet splitting energy, J=AE=E'T-ET!,
or exchange coupling of two spins.!* Hubbard-type models
can be used to study time evolution of a little bit more elabo-
rate states.!>!® To fully investigate the coherent rotation of
the two-electron system, it would be better to start with ini-
tially separated electrons (that can be constructed from
many-body wave functions) and study the time evolution of
the state in the exact many-body basis instead of using some
simplified models. However, tuning J with dot-dot separation
at small magnetic fields, the spin rotations can be quite safely
modeled within the Heisenberg picture. At high magnetic
fields, on the other hand, electrons in lateral double dots
form finite quantum Hall-like composite-particle states of
electrons and flux quanta, as shown in this study and in pre-
vious studies.!>!” Therefore the coherent spin rotations at
high B may be quite different from zero B rotations, even if
J could have exactly the same value for high-B and zero-B
states. These states are of course of great scientific interest as
their own, but from the perspective of coherent two-spin ro-
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FIG. 27. (Color online) Three

B[T] lowest singlet and triplet energy
levels and magnetization for all
studied quantum dot
confinements.

tations they may function quite differently as suggested by C. Comparisons to experiments

the Heisenberg or Hubbard models. Electric control of J with In very recent experiments Petta et al. demonstrate a co-
dot-dot separation may also be advantageous in other per-  herent rotation of two spins between singlet |S) and triplet
spectives because magnetic fields are more difficult to apply |T,) states in a lateral double dot device.”> They start the
locally. operation from a singlet state in a single QD and then isolate
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two opposite spins in separated dots where the singlet-triplet
splitting vanishes and no tunneling is allowed between the
two dots. Coherent rotation is performed by bringing the two
dots closer allowing small but finite energy splitting J be-
tween |S) and |T,) states. The probability of finding singlet is
measured as a function of gate operation time. Figure 9(a) of
this study shows calculated singlet-triplet splitting as a func-
tion of dot-dot separation and magnetic field. Following the
zero magnetic field line one can see how the singlet-triplet
splitting decreases as a function of increasing dot-dot sepa-
ration. Fixing B=0.1 T, as in the experiment, for single dot
(L=0) we have J=1.16 meV and for double dot at the great-
est interdot distance studied (d=2L=40 nm) we have J
=0.16 meV. Petta et al.” find a three times smaller value in
the single QD (J=0.4 meV) as our calculations. This is sim-
ply a consequence of different quantum dot confinement en-
ergy fiw.

Lee et al. studied experimentally singlet-triplet splitting as
a function of magnetic field in a silicon two-electron double
dot.'® The measurements show very similar data as our re-
sults. The first singlet-triplet transition is resolved clearly in
the experiment in accordance to our calculations. Decreasing
the coupling between the dots results in a small shift of J
=0 to low fields as in our results represented in Fig. 9. The
high-field regime, where we would expect to find small J and
even possibly a positive J, which would correspond to the
second singlet ground state, is not measured to very high
field strengths. However, to fully compare our results to the
measurements on silicon double dots we should recalculate
our data with silicon effective mass and dielectric constant.

Brodsky et al.'* were the first to measure ground state
energy levels of a lateral two-electron double dot as a func-
tion of magnetic field. Even if they did not concentrate on
the two-electron case particularly, the line for two electrons

PHYSICAL REVIEW B 72, 205329 (2005)

is clearly visible in their data showing also a kink indicating
the singlet-triplet transition.

Magnetization is very difficult to measure directly for just
two electrons. However, indirect methods and direct methods
with large arrays of individual few-electron dots may provide
interesting experimental results.>** Even if it is difficult to
compare existing measurements of many-electron dots to our
two-electron system, the double dot measurements of
Oosterkamp et al.>* show a similar type of anticrossings as
our calculated magnetization curves.

VIII. SUMMARY

In summary, we have thoroughly studied different lateral
two-electron quantum-dot molecules. All our exact diagonal-
ization calculations were performed for closely coupled
quantum dots. Many-body electron wave functions were al-
lowed to extend over the whole system. We have analyzed
how the physical properties change when a deviation or dis-
order is introduced in the confinement potential of the sym-
metric quantum dot. We have calculated measurable quanti-
ties such as energy levels, singlet-triplet splitting, and
magnetization as a function of magnetic field strength. The
measurable quantities were further analyzed by calculating
nonmeasurable quantities such as phase vortices and condi-
tional densities. We have also compared the properties of
noninteracting electrons to interacting ones in quantum dot
molecules to separate the effects of the noncircular confine-
ment potential and interactions.
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