147 research outputs found

    Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load

    Get PDF
    Adaptation to mechanical load, leading to enhanced force and power output, is a characteristic feature of skeletal muscle. Formation of new myonuclei required for efficient muscle hypertrophy relies on prior activation and proliferation of muscle stem cells (MuSCs). However, the mechanisms controlling MuSC expansion under conditions of increased load are not fully understood. Here we demonstrate that interstitial mesenchymal progenitors respond to mechanical load and stimulate MuSC proliferation in a surgical mouse model of increased muscle load. Mechanistically, transcriptional activation of Yes-associated protein 1 (Yap1)/transcriptional coactivator with PDZ-binding motif (Taz) in mesenchymal progenitors results in local production of thrombospondin-1 (Thbs1), which, in turn, drives MuSC proliferation through CD47 signaling. Under homeostatic conditions, however, CD47 signaling is insufficient to promote MuSC proliferation and instead depends on prior downregulation of the Calcitonin receptor. Our results suggest that relayed signaling between mesenchymal progenitors and MuSCs through a Yap1/Taz-Thbs1-CD47 pathway is critical to establish the supply of MuSCs during muscle hypertrophy

    Ξ±v integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis

    Get PDF
    The mechanisms underlying tissue fibrosis are unclear. The authors show that mesenchymal cells expressing PDGFRΞ² mediate fibrosis in skeletal muscle and heart via a mechanism involving Ξ±vΒ integrin, and that inhibitors of Ξ±vΒ integrins attenuate fibrotic responses in mice

    Optical coherence tomography-based contact indentation for diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease

    Get PDF
    This study tested the utility of optical coherence tomography (OCT)-based indentation to assess mechanical properties of respiratory tissues in disease. Using OCT-based indentation, the elastic modulus of mouse diaphragm was measured from changes in diaphragm thickness in response to an applied force provided by an indenter. We used a transgenic mouse model of chronic lung disease induced by the overexpression of transforming growth factor-alpha (TGF-a), established by the presence of pleural and peribronchial fibrosis and impaired lung mechanics determined by the forced oscillation technique and plethysmography. Diaphragm elastic modulus assessed by OCT-based indentation was reduced by TGF-a at both left and right lateral locations (p < 0.05). Diaphragm elastic modulus at left and right lateral locations were correlated within mice (r = 0.67, p < 0.01) suggesting that measurements were representative of tissue beyond the indenter field. Co-localised images of diaphragm after TGF-a overexpression revealed a layered fibrotic appearance. Maximum diaphragm force in conventional organ bath studies was also reduced by TGF-a overexpression (p < 0.01). Results show that OCT-based indentation provided clear delineation of diseased diaphragm, and together with organ bath assessment, provides new evidence suggesting that TGF-a overexpression produces impairment in diaphragm function and, therefore, an increase in the work of breathing in chronic lung disease

    Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle

    Get PDF
    Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45-) cells were evaluated in wild type (WT) and Ξ±7 integrin transgenic (Ξ±7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1+CD45βˆ’ stem cells were increased 2-fold in WT muscle post-exercise. The Ξ±7 integrin regulated the presence of Sca-1+ cells, with expansion occurring in Ξ±7Tg muscle and minimal cells present in muscle lacking the Ξ±7 integrin. Sca-1+CD45βˆ’ cells isolated from Ξ±7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7+ cells and facilitated formation of eMHC+DiIβˆ’ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an Ξ±7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the Ξ±7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy

    Exhaustive expansion: A novel technique for analyzing complex data generated by higher-order polychromatic flow cytometry experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The complex data sets generated by higher-order polychromatic flow cytometry experiments are a challenge to analyze. Here we describe Exhaustive Expansion, a data analysis approach for deriving hundreds to thousands of cell phenotypes from raw data, and for interrogating these phenotypes to identify populations of biological interest given the experimental context.</p> <p>Methods</p> <p>We apply this approach to two studies, illustrating its broad applicability. The first examines the longitudinal changes in circulating human memory T cell populations within individual patients in response to a melanoma peptide (gp100<sub>209-2M</sub>) cancer vaccine, using 5 monoclonal antibodies (mAbs) to delineate subpopulations of viable, gp100-specific, CD8+ T cells. The second study measures the mobilization of stem cells in porcine bone marrow that may be associated with wound healing, and uses 5 different staining panels consisting of 8 mAbs each.</p> <p>Results</p> <p>In the first study, our analysis suggests that the cell surface markers CD45RA, CD27 and CD28, commonly used in historical lower order (2-4 color) flow cytometry analysis to distinguish memory from naΓ―ve and effector T cells, may not be obligate parameters in defining central memory T cells (T<sub>CM</sub>). In the second study, we identify novel phenotypes such as CD29+CD31+CD56+CXCR4+CD90+Sca1-CD44+, which may characterize progenitor cells that are significantly increased in wounded animals as compared to controls.</p> <p>Conclusions</p> <p>Taken together, these results demonstrate that Exhaustive Expansion supports thorough interrogation of complex higher-order flow cytometry data sets and aids in the identification of potentially clinically relevant findings.</p

    Muscle-Bound Primordial Stem Cells Give Rise to Myofiber-Associated Myogenic and Non-Myogenic Progenitors

    Get PDF
    Myofiber cultures give rise to myogenic as well as to non-myogenic cells. Whether these myofiber-associated non-myogenic cells develop from resident stem cells that possess mesenchymal plasticity or from other stem cells such as mesenchymal stem cells (MSCs) remain unsolved. To address this question, we applied a method for reconstructing cell lineage trees from somatic mutations to MSCs and myogenic and non-myogenic cells from individual myofibers that were cultured at clonal density

    Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle

    Get PDF
    Skeletal muscle regeneration is mainly enabled by a population of adult stem cells known as satellite cells. Satellite cells have been shown to be indispensable for adult skeletal muscle repair and regeneration. In the last two decades, other stem/progenitor cell populations resident in the skeletal muscle interstitium have been identified as "collaborators" of satellite cells during regeneration. They also appear to have a key role in replacing skeletal muscle with adipose, fibrous, or bone tissue in pathological conditions. Here, we review the role and known functions of these different interstitial skeletal muscle cell types and discuss their role in skeletal muscle tissue homeostasis, regeneration, and disease, including their therapeutic potential for cell transplantation protocols

    Plasticity of the Muscle Stem Cell Microenvironment

    Get PDF
    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes

    Reduced Satellite Cell Numbers and Myogenic Capacity in Aging Can Be Alleviated by Endurance Exercise

    Get PDF
    Background: Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary. Methodology: Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., exvivo). The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro). We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in bot
    • …
    corecore