8 research outputs found

    Beckman Access versus the Bayer ACS:180 and the Abbott AxSYM cardiac Troponin-I real-time immunoassays: an observational prospective study

    Get PDF
    BACKGROUND: Reliability of cardiac troponin-I assays under real-time conditions has not been previously well studied. Most large published cTnI trials have utilized protocols which required the freezing of serum (or plasma) for delayed batch cTnI analysis. We sought to correlate the presence of the acute ischemic coronary syndrome (AICS) to troponin-I values obtained in real-time by three random-mode analyzer immunoassay systems: the Beckman ACCESS (BA), the Bayer ACS:180 (CC) and the Abbott AxSYM (AX). METHODS: This was an observational prospective study at a university tertiary referral center. Serum from a convenience sampling of telemetry patients was analyzed in real-time for troponin-I by either the BA-CC (Arm-1) or BA-AX (Arm-2) assay pairs. Presence of the AICS was determined retrospectively and then correlated with troponin-I results. RESULTS: 100 patients were enrolled in Arm-1 (38 with AICS) and 94 in Arm-2 (48 with AICS). The BA system produced 51% false positives in Arm-1, 44% in Arm-2, with negative predictive values of 92% and 100% respectively. In Arm-1, the BA and the CC assays had sensitivities of 97% and 63% and specificities of 18% and 87%. In Arm-2, the BA and the AX assays had sensitivities of 100% and 83% and specificities of 11% and 78%. CONCLUSIONS: In real-time analysis, the performance of the AxSYM and ACS:180 assay systems produced more accurate troponin-I results than the ACCESS system

    Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers

    No full text
    Acute kidney injury (AKI) remains a deadly condition. Tissue inhibitor of metalloproteinases (TIMP)-2 and insulin-like growth factor binding protein (IGFBP)7 are two recently discovered urinary biomarkers for AKI. We now report on the development, and diagnostic accuracy of two clinical cutoffs for a test using these markers. We derived cutoffs based on sensitivity and specificity for prediction of Kidney Disease: Improving Global Outcomes Stages 2-3 AKI within 12 h using data from a previously published multicenter cohort (Sapphire). Next, we verified these cutoffs in a new study (Opal) enrolling 154 critically ill adults from six sites in the USA. One hundred subjects (14%) in Sapphire and 27 (18%) in Opal met the primary end point. The results of the Opal study replicated those of Sapphire. Relative risk (95% CI) in both studies for subjects testing at a parts per thousand currency sign0.3 versus > 0.3-2 were 4.7 (1.5-16) and 4.4 (2.5-8.7), or 12 (4.2-40) and 18 (10-37) for a parts per thousand currency sign0.3 versus > 2. For the 0.3 cutoff, sensitivity was 89% in both studies, and specificity 50 and 53%. For 2.0, sensitivity was 42 and 44%, and specificity 95 and 90%. Urinary [TIMP-2]aEuro cent[IGFBP7] values of 0.3 or greater identify patients at high risk and those > 2 at highest risk for AKI and provide new information to support clinical decision-making
    corecore