92 research outputs found

    Optoelectric spin injection in semiconductor heterostructures without ferromagnet

    Full text link
    We have shown that electron spin density can be generated by a dc current flowing across a pnpn junction with an embedded asymmetric quantum well. Spin polarization is created in the quantum well by radiative electron-hole recombination when the conduction electron momentum distribution is shifted with respect to the momentum distribution of holes in the spin split valence subbands. Spin current appears when the spin polarization is injected from the quantum well into the nn-doped region of the pnpn junction. The accompanied emission of circularly polarized light from the quantum well can serve as a spin polarization detector.Comment: 2 figure

    Quantum Noise and Polarization Fluctuations in Vertical Cavity Surface Emitting Lasers

    Get PDF
    We investigate the polarization fluctuations caused by quantum noise in quantum well vertical cavity surface emitting lasers (VCSELs). Langevin equations are derived on the basis of a generalized rate equation model in which the influence of competing gain-loss and frequency anisotropies is included. This reveals how the anisotropies and the quantum well confinement effects shape the correlations and the magnitude of fluctuations in ellipticity and in polarization direction. According to our results all parameters used in the rate equations may be obtained experimentally from precise time resolved measurements of the intensity and polarization fluctuations in the emitted laser light. To clarify the effects of anisotropies and of quantum well confinement on the laser process in VCSELs we therefore propose time resolved measurements of the polarization fluctuations in the laser light. In particular, such measurements allow to distinguish the effects of frequency anisotropy and of gain-loss anisotropy and would provide data on the spin relaxation rate in the quantum well structure during cw operation as well as representing a new way of experimentally determinig the linewidth enhancement factor alpha.Comment: 16 pages and 3 Figures, RevTex, to be published in Phys. Rev.

    Voltage control of nuclear spin in ferromagnetic Schottky diodes

    Full text link
    We employ optical pump-probe spectroscopy to investigate the voltage dependence of spontaneous electron and nuclear spin polarizations in hybrid MnAs/n-GaAs and Fe/n-GaAs Schottky diodes. Through the hyperfine interaction, nuclear spin polarization that is imprinted by the ferromagnet acts on conduction electron spins as an effective magnetic field. We demonstrate tuning of this nuclear field from <0.05 to 2.4 kG by varying a small bias voltage across the MnAs device. In addition, a connection is observed between the diode turn-on and the onset of imprinted nuclear polarization, while traditional dynamic nuclear polarization exhibits relatively little voltage dependence.Comment: Submitted to Physical Review B Rapid Communications. 15 pages, 3 figure

    Multi-layer scintillation detector for the MOON double beta decay experiment: Scintillation photon responses studied by a prototype detector MOON-1

    Get PDF
    An ensemble of multi-layer scintillators is discussed as an option of the high-sensitivity detector Mo Observatory Of Neutrinos (MOON) for spectroscopic measurements of neutrino-less double beta decays. A prototype detector MOON-1, which consists of 6 layer plastic-scintillator plates, was built to study the sensitivity of the MOON-type detector. The scintillation photon collection and the energy resolution, which are key elements for the high-sensitivity experiments, are found to be 1835+/-30 photo-electrons for 976 keV electrons and sigma = 2.9+/-0.1% (dE/E = 6.8+/-0.3 % in FWHM) at the Qbb ~ 3 MeV region, respectively. The multi-layer plastic-scintillator structure with good energy resolution as well as good background suppression of beta-gamma rays is crucial for the MOON-type detector to achieve the inverted hierarchy neutrino mass sensitivity.Comment: 8 pages, 16 figures, submitted to Nucl.Instrum.Met

    Theory of Photoluminescence of the ν=1\nu=1 Quantum Hall State: Excitons, Spin-Waves and Spin-Textures

    Full text link
    We study the theory of intrinsic photoluminescence of two-dimensional electron systems in the vicinity of the ν=1\nu=1 quantum Hall state. We focus predominantly on the recombination of a band of initial ``excitonic states'' that are the low-lying energy states of our model at ν=1\nu=1. It is shown that the recombination of excitonic states can account for recent observations of the polarization-resolved spectra of a high-mobility GaAs quantum well. The asymmetric broadening of the spectral line in the σ\sigma_- polarization is explained to be the result of the ``shake-up'' of spin-waves upon radiative recombination of excitonic states. We derive line shapes for the recombination of excitonic states in the presence of long-range disorder that compare favourably with the experimental observations. We also discuss the stabilities and recombination spectra of other (``charged'') initial states of our model. An additional high-energy line observed in experiment is shown to be consistent with the recombination of a positively-charged state. The recombination spectrum of a negatively-charged initial state, predicted by our model but not observed in the present experiments, is shown to provide a direct measure of the formation energy of the smallest ``charged spin-texture'' of the ν=1\nu=1 state.Comment: 23 pages, 7 postscript figures included. Revtex with epsf.tex and multicol.sty. The revised version contains slightly improved numerical results and a few additional discussions of the result

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Requirement of Male-Specific Dosage Compensation in Drosophila Females—Implications of Early X Chromosome Gene Expression

    Get PDF
    Dosage compensation equates between the sexes the gene dose of sex chromosomes that carry substantially different gene content. In Drosophila, the single male X chromosome is hypertranscribed by approximately two-fold to effect this correction. The key genes are male lethal and appear not to be required in females, or affect their viability. Here, we show these male lethals do in fact have a role in females, and they participate in the very process which will eventually shut down their function—female determination. We find the male dosage compensation complex is required for upregulating transcription of the sex determination master switch, Sex-lethal, an X-linked gene which is specifically activated in females in response to their two X chromosomes. The levels of some X-linked genes are also affected, and some of these genes are used in the process of counting the number of X chromosomes early in development. Our data suggest that before the female state is set, the ground state is male and female X chromosome expression is elevated. Females thus utilize the male dosage compensation process to amplify the signal which determines their fate
    corecore