18 research outputs found

    beta-Carotene biotransformation to obtain aroma compounds

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Carotenoids are important constituents of food due to their color and because their degradation products generate important volatile compounds in foods. Aroma compounds derived from carotenoids are widely distributed in nature, and they are precursors of many important aromas in foods such as fruits and in flowers as well. They present high aromatic potential and are therefore of great interest to the industries of aromas and fragrances. In this study, more than 300 previously isolated microorganisms with potential for biotransformation of beta-carotene present in the culture medium were selected using the plate method; about 80 strains presented capacity to produce aroma compounds and 7 strains were selected by an untrained panel of tasters to generate aroma compounds. The beta-ionone was the main compound produced by CS1 ( 34.0 mg. L-1) and CF9 ( 42.4 mg. L-1) microorganisms at 72 and 24 hours of fermentation, cultured with and without pre-inoculation, respectively. The beta-damascone and pseudoionone were found in low concentrations, 1,1,6-trimethyl-1,2,3,4-tetrahydronaphthalen (TTN) was tentatively identified and other compounds such as apocarotenoids, apparently obtained from the cleavage of the central part of the carotenoid, were detected.303822827Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Screening Of Fruit Flavors Producing Pectinolitic Microorganisms Isolated From Agroindustrial Residues [isolamento E Seleção De Microrganismos Pectinolíticos A Partir De Resíduos Provenientes De Agroindústrias Para Produção De Aromas Frutais]

    No full text
    Pectinases are enzymes used in food industries, produced by plants, fungi, yeasts and bacteria. These microorganisms can be inoculated in a medium containing agro-industrial residues from processing agricultural products, used as a carbon source to produce value-added products such as enzymes, ethanol, proteins, amino acids and flavor compounds. Several microorganisms were isolated and selected due to their capacity to produce pectinolytic enzymes in clear halos around colonies by plate assay. From 104 strains, 18 were inoculated in a medium containing pectin as a carbon source and the pectinolytic activities of polygalacturonase (PG) and pectin lyase (PMGL) were determined. Strains 2, 9, 20, 39, 70, 74, and 99 showed activity units of PG higher than 80 μmol galacturonic acid/mL/minute. Strains 17, 18, 31, 37, 73, 74 and 125 showed activity units of PMGL higher than 1000 ηmol unsaturated products/ mL/minute. Strains 13, 70, 73, 74, 125 and 144 showed good signs of flavor noticed in the fructose and yeast extract medium and the most intense flavor according to a non-trained board of tasters.263509515Albershein, P., Pectin lyase from fungi (1966) Methods in Enzymology, 8, pp. 628-631. , Complex CarbohydratesAlkorta, I., Garbisu, C., Llama, M.J., Serra, J.L., Industrial applications of pectic enzymes: A review (1998) Process Biochem., 33 (1), pp. 21-28Bhat, M.K., Cellulases related enzymes in biothecnology (2000) Biotechnol. Adv., 18 (5), pp. 355-383Blandino, A., Dravillas, K., Cantero, D., Pandiella, S.S., Webb, C., Utilization of whole wheat flour for the production of extracellular pectinases by some fungal strains (2001) Process Biochem., 37 (5), pp. 497-503Bonnin, E., Le Goff, A., Koimer, R., Van Alebeek, G.-J.W.M., Christensen, T.M.I.E., Voragen, A.G.J., Roepstorff, P., Tribault, J.-F., Study of the mode of action of endopolygalacturonase from Fusarium moniliforme (2001) Biochim. Biophys. Acta - General Subjects, 1526 (3), pp. 301-309Brand, D., Pandey, A., Roussos, S., Soccol, C.R., Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system (2000) Enzyme Microb. Technol., 27 (1-2), pp. 127-133Bravo, C.E.C., De Carvalho, E.P., Schwan, R.F., Gómez, R.J.H.C., Pilon, L., Determinação de condições ideais para produção de poligalacturonase por Kluyveromyces marxianus (2000) Ciência e Agrotecnologia, 24, pp. 137-152. , edição especialCastilho, L.R., Medronho, R.A., Alves, T.L.M., Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger (2000) Bioresour. Technol., 71 (1), pp. 45-50Christen, P., Bramorski, A., Revah, S., Soccol, C.R., Characterization of volatile compounds produced by Rhizopus strains grow on agroindustrial solid wastes (2000) Bioresour. Technol., 71 (3), pp. 211-215De Gregorio, A., Mandalani, G., Arena, N., Nucita, F., Tripodo, M.M., Lo Curto, R.B., SCP and crude pectinase production by slurry-state fermentation of lemon pulps (2002) Bioresour. Technol., 83 (2), pp. 89-94Gainvors, A., Frézier, V., Lemaresquier, H., Lequart, C., Aigle, M., Belarbi, A., Detection of polygalacturonase, pectin-lyase and pectin-esterase activities in a Saccharomyces cerevisiae strain (1994) Yeast, 10 (10), pp. 1311-1319Gómez, E., Laencina, J., Martinez, A., Vinification effects on changes in volatile compounds of wine (1994) J. Food Sci., 59 (2), pp. 406-409Hart, H.E., Parish, M.E., Burns, J.K., Wicker, L., Orange finisher pulp as substrate for polygalacturonase production by Rhizopus oryzae (1991) J. Food Sci., 56 (2)Hennies, P.T., (1996) Produção de Pectinase de Penicillium italicum Através de Fermentação Em Meio Semi-sólido, 68p. , Campinas, Dissertação (Mestre em Engenharia de Alimentos), Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP)Kashyap, D.R., Chandra, S., Kaul, A., Tewari, R., Production, purification and characterization of pectinase from Bacillus sp. DT7 (2000) World J. Microbiol. Biotechnol., 16 (3), pp. 277-282Kayshap, D.R., Vohra, P.K., Chopra, S., Tewari, R., Applications of pectinases in the commercial sector: A review (2001) Bioresour. Technol., 77 (3), pp. 215-227Lang, C., Dörnenburg, H., Perspectives in the biological function and the technological application of polygalacturonases (2000) Appl. Microbiol. Biotechnol., 53 (4), pp. 366-375Limberg, G., Körner, R., Buchholt, H.C., Christensen, T.M.I.E., Roepstorff, P., Mikkelsen, J.D., Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. niger (2000) Carbohydrate Research, 327 (3), pp. 293-307Limberg, G., Körner, R., Buchholt, H.C., Christensen, T.M.I.E., Roepstorff, P., Mikkelsen, J.D., Quantification of the amount of galacturonic acid residues in blocksequences in pectin homogalacturonan by enzymatic fingerprinting with exo- and endo-polygalacturonase II from A. niger (2000) Carbohydr. Res., 327 (3), pp. 321-332Maiorano, A.E., (1990) Produção de Pectinase Por Fermentação Em Estado Sólido, 262p. , São Paulo, Tese (Doutor em Engenharia Química), Escola Politécnica, Universidade de São Paulo (USP)Manachini, P.L., Parini, C., Fortina, M.G., Pectic enzymes from Aereobasisium pullulans LV 10 (1988) Enzyme Microb. Technol., 10 (11), pp. 682-685Marques, D.B., (1998) Produção e Caracterização de Aromas de Frutas Por Pichia membranaefaciens, 136p. , Campinas, Dissertação (Mestre em Ciência de Alimentos), Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP)Martins, E.S., Silva, D., Da Silva, R., Gomes, E., Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus (2002) Process Biochem., 37 (9), pp. 949-954McCready, R.M., Pectin (1970) Methods in Food Analysis, pp. 565-599. , JOSELYN, M. A. Academic Press, 2nd edition, cap. XIXMcCready, R.M., McComb, E.A., Extraction and determination of total pectic materials in fruits (1952) Anal. Chem., 24 (12), pp. 1986-1988McKay, A.M., A plate assay method for the detection of fungal polygalacturonase secretion (1988) FEMS Microbiol. Lett., 56 (3), pp. 355-358Medeiros, A.B.P., Pandey, A., Freitas, R.J.S., Christen, P., Soccol, C.R., Optimization of the production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology (2000) Biochem. Eng. J., 6 (1), pp. 33-39Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar (1959) Anal. Chem., 31 (3), pp. 426-428Naidu, G.S.N., Panda, T., Performance of pectolytic enzymes during hydrolysis of pectic substances under assay conditions: A statistical approach (1999) Enzyme Microb. Technol., 25 (1-2), pp. 116-124Ooijkaas, L.P., Weber, F.J., Buitelaar, R.M., Tramper, J., Rinzema, A., Defined media and inert supports: Their potential as solid-state fermentation production systems (2000) Trends Biotechnol., 18 (2), pp. 356-360Pandey, A., Soccol, C.R., Mitchell, D., New developments in solid-state fermentation: I-bioprocesses and products (2000) Process Biochem., 35 (10), pp. 1153-1169Pandey, A., Soccol, C.R., Nigam, P., Brand, D., Mohan, R., Russos, S., Biotechnological potential of coffee pulp and coffee husk for bioprocess (2000) Biochem. Eng. J., 6 (2), pp. 153-162Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T., Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse (2000) Bioresour. Technol., 74 (1), pp. 69-80Piccoli-Valle, R.H., Passos, F.M.L., Passos, F.J.V., Silva, D.O., Production of pectin lyase by Penicillium griseoroseum in bioreactors in the absence of inducer (2001) Braz. J. Microbiol., 32 (2), pp. 135-140Rha, E., Park, H.J., Kim, M.O., Chung, Y.R., Lee, C.-W., Kim, J.W., Expression of exo-polygalacturonases in Botrytis cinerea (2001) FEMS Microbiol. Lett., 201 (1), pp. 105-109Rizzatto, M.L., (1999) Estudo Da Produção de Pectinases Por Penicillium italicum IZ 1584 e Aspergillus niger NRRL 3122 Por Fermentação Semi-sólida Em Bagaço de Laranja Industrializado, 89p. , Campinas, Dissertação (Mestre em Engenharia de Alimentos), Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP)Rosillo, L., Salinas, M.R., Garijo, J., Alonso, G.L., Study of volatiles in grapes by dynamic headspace analysis. Application to the differentiation of some Vitis vinifera varieties (1999) J. Chromatogr., A, 847 (1-2), pp. 155-159Sakai, T., Sakamoto, T., Hallaert, J., Vandamme, E.P., Ectin, pectinase and protopectinase: Production, properties and applications (1993) Adv. Appl. Microbiol., 39, pp. 213-294Silva, C.F., Schwan, R.F., Dias, E.S., Wheals, A.E., Microbial diversity during maturation and natural processing of coffee cherries of Coffee arabica in Brazil (2000) Int. J. Food Microbiol., 60 (2-3), pp. 251-260Soares, M.M.C.N., Da Silva, R., Gomes, E., Screening of bacterial strains or pectinolytic activity: Characterization of the polygalacturonase produced by Bacillus sp. (1999) Revista de Microbiologia, 30 (4), pp. 299-303Soares, M., Christen, P., Pandey, A., Soccol, C.R., Fruit flavor production by Ceratocystis frimbiata grown on coffee husk in solid-state fermentation (2000) Process Biochem., 35 (8), pp. 857-861Soccol, C.R., Vandenberghe, L.P.S., Overview of applied solid-state fermentation in Brazil (2003) Biochem. Eng. J., 13 (2-3), pp. 205-218Takayanagi, T., Uchibori, T., Yokutsuka, K., Characteristics of yeast polygalacturonases induced during fermentation on grapes skins (2001) Am. J. Enology and Viticulture, 52 (1), pp. 41-44Taragano, V.M., Pilosof, A.M.R., Application of Dohlert desings for water activity, pH, and fermentation time optimization for Aspergillus niger pectinolytic activities production activities production in solid-state and submerged fermentation (1999) Enzyme Microbial Technol., 25 (3-5), pp. 411-419Tsuyumu, S., Ishii, S., Nakamura, M., Plate assay for differentiation of different pectinases (1989) Agric. Biol. Chem., 53 (9), pp. 2509-2511Uenojo, M., (2003) Produção e Caracterização de Aromas de Frutas Por Microrganismos Pectinolíticos Utilizando-se Resíduos Agroindustriais, 124p. , Campinas, Dissertação (Mestre em Ciência de Alimentos), Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP)Vilariño, C., Del Giorgio, J.F., Hours, R.A., Cascone, O., Spectrophotometric method for fungal pectinesterase activity determination (1993) Lebensmithel-Wissenschaft und Technologie, 26 (2), pp. 107-110Whitaker, J.R., Pectic enzymes (1994) Principles of Enzimology for the Food Sciences, 2nd Edition, pp. 425-436. , New YorkZheng, Z., Shetty, K., Solid state production of polygalacturonase by Lentinus edodes using fruit processing wastes (2000) Process Biochem., 35 (8), pp. 825-83

    β-carotene Biotransformation To Obtain Aroma Compounds [biotransformação De β-caroteno Para Obtenção De Compostos De Aroma]

    No full text
    Carotenoids are important constituents of food due to their color and because their degradation products generate important volatile compounds in foods. Aroma compounds derived from carotenoids are widely distributed in nature, and they are precursors of many important aromas in foods such as fruits and in flowers as well. They present high aromatic potential and are therefore of great interest to the industries of aromas and fragrances. In this study, more than 300 previously isolated microorganisms with potential for biotransformation of β-carotene present in the culture medium were selected using the plate method; about 80 strains presented capacity to produce aroma compounds and 7 strains were selected by an untrained panel of tasters to generate aroma compounds. The β-ionone was the main compound produced by CS1 (34.0 mg.L-1) and CF9 (42.4 mg.L-1) microorganisms at 72 and 24 hours of fermentation, cultured with and without pre-inoculation, respectively. The β-damascone and pseudoionone were found in low concentrations, 1,1,6-trimethyl-1,2,3,4-tetrahydronaphthalen (TTN) was tentatively identified and other compounds such as apocarotenoids, apparently obtained from the cleavage of the central part of the carotenoid, were detected.303822827Acree, T., Arn, H., (2009) Flavornet and Human Odor Space, , http://www.flavornet.org, Disponível em, Acesso em: 1 fevBaldermann, S., Naim, M., Fleischmann, P., Enzymatic carotenoid degradation and aroma formation in nectarines (Prunus persica) (2005) Food Research International, 38 (8-9), pp. 833-836Buttery, R.G., Quantitative and sensory studies on tomato paste volatiles (1990) Journal of Agricultural and Food Chemistry, 38 (1), pp. 336-340Collins, C.H., Braga, G.L., Bonato, P.S., (2006) Fundamentos De Cromatografia, , Campinas: UnicampDuque, C., Osorio, C., Morales, A.L., C13-noroisoprenoids in the aroma of colombian tropical fruits (2002) Carotenoid-derived Aroma Compounds, pp. 194-205. , WINTERHALTER, P.ROUSEFF, R. L, Washington, DC: American Chemical SocietyFerreira, A.C.S., Study of major aromatic compounds in port wines from carotenoid degradation (2008) Food Chemistry, 110 (1), pp. 83-87Ferreira, V., Quantitative determination of trace and ultratrace flavour active compounds in red wines through gas chromatographic-ion trap mass spectrometric analysis of microextracts (1998) Journal of Chromatography A, 806 (2), pp. 349-354Fleischmann, P., Watanabe, N., Winterhalter, P., Enzymatic carotenoid cleavage in star fruit (Averrhoa carambola) (2003) Phytochemistry, 63 (2), pp. 131-137Hcheögnadóttir, Á., Rouseff, R.L., Identification of aroma active compounds in orange essence oil using gas chromatography-olfactometry and gas chromatography-mass spectrometry (2003) Journal of Chromatography A, 998 (1-2), pp. 201-211Ibdah, M., Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon (2006) Phytochemistry, 67 (15), pp. 579-1589Kotseridis, Y., Quantitative determination of β-ionone in red wines and grapes of Bordeaux using a stable isotope dilutwion assay (1999) Journal of Chromotography A, 848 (1-2), pp. 317-325Kotseridis, Y., Baumes, R., Skouroumounis, G.K., Synthesis of labeled [2H2]2-methoxy-3-isobutylpyrazine, [2H&3]α-ionone, and [2H&3] β-ionone, for quantification in grapes, juices and wines (1998) Journal of Chromatography A, 824 (1), pp. 71-78Kováts, E., Gas-chromatographische charakterisierung organisher verbindungen (1958) Helvetica Chimica Acta, 41 (206), pp. 1915-1932Maldonado-Robledo, G., Production of tobacco aroma from lutein. Specific role of the microorganisms involved in the process (2003) Applied Microbiology and Biotechnology, 62 (5-6), pp. 484-488(2009) Database of Pheromones and Semiochemicals, , http://www.pherobase.com/database/kovats/kovats-index.php, PHEROBASE, Disponível em, Acesso em: 1 fevRodríguez-Bustamante, E., Bioconversion of lutein using a microbial mixture - maximizing the production of tobacco aroma compounds by manipulation of culture medium (2005) Applied Microbiology and Biotechnology, 68 (2), pp. 174-182Rodríguez-Bustamante, E., Novel method for aroma recovery from the bioconversion of lutein to ionone by Thricosporon asahii using a mesoporous silicate material (2006) Applied Microbiology and Biotechnology, 71 (4), pp. 568-573Sánchez-Contreras, A., Jiménez, M., Sanches, S., Bioconversion of lutein to products with aroma (2000) Applied Microbiology and Biotechnology, 54 (4), pp. 528-534Schwartz, S.H., Qin, X., Zeevaart, J.A.D., Characterization of a novel carotenoid cleavage dioxigenase from plants (2001) The Journal of Biological Chemistry, 276 (27), pp. 25208-25211Shalit, M., Acetyl-CoA: Alcohol acetyltransferase activity and aroma formation in ripening melon fruits (2001) Journal of Agricultural and Food Chemistry, 49 (2), pp. 794-799Shimoni, E., Biotransformation ofpropenybenzenes by an Arthrobacter sp. and its t-anethole blocked mutants (2003) Journal of Biotechnology, 105 (1-2), pp. 61-70Simkin, A.J., The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles - ionone, pseudoionone, and geranylacetone (2004) The Plant Journal, 40 (6), pp. 882-892Solís-Solís, H.M., Characterization of aroma potential of apricot varieties using different extraction techniques (2007) Food Chemistry, 105 (2), pp. 829-837Sommerburg, O., Carotene cleavage products after oxidation mediated by hypochlorous acid - a model for neutrophil-derived degradation (2003) Free Radical Biology and Medicine, 35 (11), pp. 1480-1490Tieman, D.M., Identification of loci affecting flavor volatile emissions in tomato fruits (2006) Journal of Experimental Botany, 57 (4), pp. 887-896Uenojo, M., Maróstica Júnior, M.R., Pastore, G.M., Carotenóides: Propriedades, aplicações e biotransformação para formação de compostos de aroma (2007) Química Nova, 30 (2), pp. 616-622van den Dool, H., Kratz, P.C., A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography (1963) Journal of Chromatography, 11 (2), pp. 463-471Waché, Y., Effect of cis/trans isomerism of carotene on the ratios of volatile compounds produced during oxidative degradation (2003) Journal of Agriculture and Food Chemistry, 51 (7), pp. 1984-1987Waché, Y., Bosser-Deratuld, A., Belin, J.M., Dispersion of carotene in process of production of ionone by cooxidation using enzyme-generated reactive oxygen species (2006) Process Biochemistry, 41 (11), pp. 2337-2341Winterhalter, P., Rouseff, R., Carotenoid-derived aroma compounds: An introduction (2002) Carotenoid-Derived Aroma Compounds, pp. 1-17. , WINTERHALTER, P.ROUSEFF, R. L, Washington, DC: American Chemical SocietyZorn, H., Cleavage of β,β-carotene to flavor compounds by fungi (2003) Applied Microbiology and Biotechnology, 62 (4), pp. 331-336Zorn, H., A peroxidase from Lepsita irina cleaves β,β-carotene to flavor compounds (2003) Biological Chemistry, 384 (7), pp. 1049-105

    Carotenoids: Properties, Applications And Biotransformation In Flavor Compounds [carotenóides: Propriedades, Aplicações E Biotransformação Para Formação De Compostos De Aroma]

    No full text
    Carotenoids are widely distributed in nature, providing yellow, orange or red color in a great number of vegetables, microorganisms and in some animals. Carotenoids act as biological antioxidants and seem to play an important role in human health by protecting cells and tissues from the damaging effects of free radicals and singlet oxygen. Several authors describe the oxidative cleavage of carotenoids in flavor compounds as occuring through chemical or photochemical degradations or through biotechnological processes. Biotransformation of carotenoids seems to be a reasonable alternative to produce flavor compounds since these compounds are considered 'natural' ingredients. In this work we describe the properties of some carotenoids, as well as biotechnological approaches to obtain its oxyfunctionalized derivatives.303616622Fraser, P.D., Bramley, P.M., (2004) Prog. Lipid Res, 43, p. 228Astorg, P., (1997) Trends Food Sci. Technol, 8, p. 406Su, Q., Rowley, K.G., Balazs, N.D.H., (2002) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 781, p. 393Wintherhalter, P.Rouseff, R. Em Carotenoid-Derived Aroma CompoundsWintherhalter, P.Rouseff, R., eds.American Chemical Society: Washington D. C., 2002, cap. 1Maldonado-Robledo, G., Rodriguez-Bustamante, E., Sanchez-Contreras, A., Rodriguez-Sonoja, R., Sanchez, S., (2003) Appl. Microbiol. Biotechnol, 62, p. 484Delgado-Vargas, F., Jiménez, A.R., Paredes-Lópes, O., (2000) Crit. Rev. Food Sci. Nutr, 40, p. 173Rodrigues-Amaya, D.A Guide to Carotenoid Analysis in Foods, OMNI Research: ILSI Press: Washington D. C. 1999Olivier, J., Palou, A., (2000) J. Chromatogr., A, 881, p. 543Agarwal, S., Rao, A.V., (1998) Lipids, 33, p. 981Edge, R., McGarvey, D.J., Truscott, T.G., (1997) J. Photochem. Photobiol., B, 41, p. 189http://www.leffingwell.com/caroten.htm, acessada em Setembro 2005Mohamed, N., Hashim, R., Rahman, N.A., Zain, S.M., (2001) J. Mol. Struct.: Theochem, 538, p. 245Weeks, W. W. Em Biogeneration of AromasParliament, T. H.Croteau, R., eds.American Chemical Society: Washington D. C., 1986, cap. 12Demyttenaere, J., Kimpe, N., (2001) J. Mol. Catal. B: Enzym, 11, p. 265Serra, S., Fuganti, C., Brenna, E., (2005) Trends Biotechnol, 23, p. 193Chatterjee, T., Bhattacharyya, D.K., (2001) Appl. Microbiol. Biotechnol, 55, p. 541Nornier, M.-F., de Gaulejac, N.V., Vivas, N., Vitry, C., (2004) C. R. Chim, 7, p. 689Ravichandran, R., (2002) Food Chem, 78, p. 23Bosser, A., Belin, J.M., (1994) Biotechnol. Prog, 10, p. 129Gloria, M.B., Grulke, E.A., Gray, J.I., (1993) Food Chem, 46, p. 401Waché, Y., Bosser-DeRatuld, A., Ly, H.M., Belin, J.-M., (2002) J. Mol. Catal. B: Enzym, 19-20, p. 197Puglisi, C.J., Elsey, G.M., Prager, R.H., Skouroumounis, G.K., Sefton, M.A., (2001) Tetrahedron Lett, 42, p. 6937Lewinsohn, E., Situt, Y., Bar, E., Azulay, Y., Ibdah, M., Meir, A., Yosef, E., Tadmor, Y., (2005) Food Sci. Tecnhol, 16, p. 407Sànchez-Contreras, A., Jimenez, M., Sanches, S., (2000) Appl. Microbiol. Biotechnol, 54, p. 528Zorn, H., Langhoff, S., Scheibner, M., Berger, R.G., (2003) Appl. Microbiol. Biotechnol, 62, p. 331Grivel, F., Larroche, C., Gros, J.B., (1999) Biotechnol. Prog, 15, p. 697Urlacher, V.B., Makhsumkhanov, A., Schmid, R.D., (2006) Appl. Microbiol. Biotechnol, 70, p. 53Marasco, S.-D., (2003) Appl. Biotechnol. Food Sci. Policy, 1, p. 145Balderman, S., Naim, M., Fleishmann, P., (2005) Food Res. Int, 38, p. 833Giuliano, G., Al-Babili, S., von Lintig, J., (2003) Trends Plant Sci, 8, p. 145Fleischmann, P., Watanabe, N., Wintherhalter, P., (2003) Phytochemistry, 63, p. 131Zorn, H., Langhoff, S., Scheibner, M., Nimtz, M., Berger, R.G., (2003) Biol. Chem, 384, p. 1049Wu, Z., Robinson, D.S., Hughes, R.K., Casey, R., Hardy, D., West, S.I., (1999) J. Agric. Food Chem, 47, p. 4899Schwartz, S.H., Qin, X., Zeevaart, J.A.D., (2001) J. Biol. Chem, 276, p. 2520
    corecore