41 research outputs found
TIGIT/CD155 axis mediates resistance to immunotherapy in patients with melanoma with the inflamed tumor microenvironment
Background
Patients with cancer benefit from treatment with immune checkpoint inhibitors (ICIs), and those with an inflamed tumor microenvironment (TME) and/or high tumor mutation burden (TMB), particularly, tend to respond to ICIs; however, some patients fail, whereas others acquire resistance after initial response despite the inflamed TME and/or high TMB. We assessed the detailed biological mechanisms of resistance to ICIs such as programmed death 1 and/or cytotoxic T-lymphocyte-associated protein 4 blockade therapies using clinical samples.
Methods
We established four pairs of autologous tumor cell lines and tumor-infiltrating lymphocytes (TILs) from patients with melanoma treated with ICIs. These tumor cell lines and TILs were subjected to comprehensive analyses and in vitro functional assays. We assessed tumor volume and TILs in vivo mouse models to validate identified mechanism. Furthermore, we analyzed additional clinical samples from another large melanoma cohort.
Results
Two patients were super-responders, and the others acquired resistance: the first patient had a non-inflamed TME and acquired resistance due to the loss of the beta-2 microglobulin gene, and the other acquired resistance despite having inflamed TME and extremely high TMB which are reportedly predictive biomarkers. Tumor cell line and paired TIL analyses showed high CD155, TIGIT ligand, and TIGIT expression in the tumor cell line and tumor-infiltrating T cells, respectively. TIGIT blockade or CD155-deletion activated T cells in a functional assay using an autologous cell line and paired TILs from this patient. CD155 expression increased in surviving tumor cells after coculturing with TILs from a responder, which suppressed TIGIT+ T-cell activation. Consistently, TIGIT blockade or CD155-deletion could aid in overcoming resistance to ICIs in vivo mouse models. In clinical samples, CD155 was related to resistance to ICIs in patients with melanoma with an inflamed TME, including both primary and acquired resistance.
Conclusions
The TIGIT/CD155 axis mediates resistance to ICIs in patients with melanoma with an inflamed TME, promoting the development of TIGIT blockade therapies in such patients with cancer
PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes
PD-1 blockade exerts clinical efficacy against various types of cancer by reinvigorating T cells that directly attack tumor cells (tumor-specific T cells) in the tumor microenvironment (TME), and tumor-infiltrating lymphocytes (TILs) also comprise nonspecific bystander T cells. Here, using single-cell sequencing, we show that TILs include skewed T cell clonotypes, which are characterized by exhaustion (T-ex) or nonexhaustion signatures (Tnon-ex). Among skewed clonotypes, those in the T-ex, but not those in the Tnon-ex, cluster respond to autologous tumor cell lines. After PD-1 blockade, non-preexisting tumor-specific clonotypes in the T-ex cluster appear in the TME. Tumor-draining lymph nodes (TDLNs) without metastasis harbor a considerable number of such clonotypes, whereas these clonotypes are rarely detected in peripheral blood. We propose that tumor-infiltrating skewed T cell clonotypes with an exhausted phenotype directly attack tumor cells and that PD-1 blockade can promote infiltration of such T-ex clonotypes, mainly from TDLNs
Genetic Polymorphisms of the Human PNPLA3 Gene Are Strongly Associated with Severity of Non-Alcoholic Fatty Liver Disease in Japanese
Nonalcoholic fatty liver disease (NAFLD) includes a broad range of liver pathologies from simple steatosis to cirrhosis and fibrosis, in which a subtype accompanying hepatocyte degeneration and fibrosis is classified as nonalcoholic steatohepatitis (NASH). NASH accounts for approximately 10-30% of NAFLD and causes a higher frequency of liver-related death, and its progression of NASH has been considered to be complex involving multiple genetic factors interacting with the environment and lifestyle.To identify genetic factors related to NAFLD in the Japanese, we performed a genome-wide association study recruiting 529 histologically diagnosed NAFLD patients and 932 population controls. A significant association was observed for a cluster of SNPs in PNPLA3 on chromosome 22q13 with the strongest p-value of 1.4 × 10(-10) (OR = 1.66, 95%CI: 1.43-1.94) for rs738409. Rs738409 also showed the strongest association (p = 3.6 × 10(-6)) with the histological classifications proposed by Matteoni and colleagues based on the degree of inflammation, ballooning degeneration, fibrosis and Mallory-Denk body. In addition, there were marked differences in rs738409 genotype distributions between type4 subgroup corresponding to NASH and the other three subgroups (p = 4.8 × 10(-6), OR = 1.96, 95%CI: 1.47-2.62). Moreover, a subgroup analysis of NAFLD patients against controls showed a significant association of rs738409 with type4 (p = 1.7 × 10(-16), OR = 2.18, 95%CI: 1.81-2.63) whereas no association was obtained for type1 to type3 (p = 0.41). Rs738409 also showed strong associations with three clinical traits related to the prognosis of NAFLD, namely, levels of hyaluronic acid (p = 4.6 × 10(-4)), HbA1c (p = 0.0011) and iron deposition in the liver (p = 5.6 × 10(-4)).With these results we clearly demonstrated that Matteoni type4 NAFLD is both a genetically and clinically different subset from the other spectrums of the disease and that the PNPLA3 gene is strongly associated with the progression of NASH in Japanese population
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
Skilled Birth Attendants in Tanzania: A Descriptive Study of Cadres and Emergency Obstetric Care Signal Functions Performed
Although most developing countries monitor the proportion of births attended by skilled birth attendants (SBA), they lack information on the availability and performance of emergency obstetric care (EmOC) signal functions by different cadres of health care providers (HCPs). The World Health Organisation signal functions are set of key interventions that targets direct obstetric causes of maternal deaths. Seven signal functions are required for health facilities providing basic EmOC and nine for facilities providing comprehensive EmOC. Our objectives were to describe cadres of HCPs who are considered SBAs in Tanzania, the EmOC signal functions they perform and challenges associated with performance of EmOC signal functions. We conducted a cross-sectional study of HCPs offering maternity care services at eight health facilities in Moshi Urban District in northern Tanzania. A questionnaire and health facility assessment forms were used to collect information from participants and health facilities. A total of 199 HCPs working at eight health facilities in Moshi Urban District met the inclusion criteria. Out of 199, 158 participated, giving a response rate of 79.4 %. Ten cadres of HCPs were identified as conducting deliveries regardless of the level of health facilities. Most of the participants (81 %) considered themselves SBAs, although some were not considered SBAs by the Ministry of Health and Social Welfare (MOHSW). Only two out of the eight facilities provided all of the required EmOC signal functions. While Assistant Medical Officers are expected to perform all the signal functions, only 38 % and 13 % had performed vacuum extraction or caesarean sections respectively. Very few registered and enrolled nurse-midwives had performed removal of retained products (22 %) or assisted vaginal delivery (24 and 11 %). Inadequate equipment and supplies, and lack of knowledge and skills in performing EmOC were two main challenges identified by health care providers in all the level of care. In the district, gaps existed between performance of EmOC signal functions by SBAs as expected by the MOHSW and the actual performance at health facilities. All basic EmOC facilities were not fully functional. Few health care providers performed all the basic EmOC signal functions. Competency-based in-service training of providers in EmOC and provision of enabling environment could improve performance of EmOC signal functions in the district