49 research outputs found

    A Search for Near-Infrared Emission From the Halo of NGC 5907 at Radii of 10 kpc to 30 kpc

    Get PDF
    We present a search for near-infrared (3.5-5 micron) emission from baryonic dark matter in the form of low-mass stars and/or brown dwarfs in the halo of the nearby edge-on spiral galaxy NGC 5907. The observations were made using a 256 by 256 InSb array with a pixel scale of 17" at the focus of a liquid-helium-cooled telescope carried above the Earth's atmosphere by a sounding rocket. In contrast to previous experiments which have detected a halo around NGC 5907 in the V, R, I, J and K bands at galactic radii 6kpc < r < 10kpc, our search finds no evidence for emission from a halo at 10kpc < r < 30kpc. Assuming a halo mass density scaling as r^(-2), which is consistent with the flat rotation curves that are observed out to radii of 32kpc, the lower limit of the mass-to-light ratio at 3.5-5 microns for the halo of NGC 5907 is 250 (2 sigma) in solar units. This is comparable to the lower limit we have found previously for NGC 4565 (Uemizu et al. 1998). Based on recent models, our non-detection implies that hydrogen- burning stars contribute < 15% of the mass of the dark halo of NGC 5907. Our results are consistent with the previous detection of extended emission at r < 10kpc if the latter is caused by a stellar population that has been ejected from the disk because of tidal interactions. We conclude that the dark halo of NGC 5907, which is evident from rotation curves that extend far beyond 10kpc, is not comprised of hydrogen burning stars.Comment: 12 pages, LateX, plus 6 ps figures. Accepted by ApJ. minor changes, added references, corrected typo

    Detection of an H-alpha Emission Line on a Quasar, RX J1759.4+6638, at z=4.3 with AKARI

    Full text link
    We report the detection of an H-alpha emission line in the low resolution spectrum of a quasar, RX J1759.4+6638, at a redshift of 4.3 with the InfraRed Camera (IRC) onboard the AKARI. This is the first spectroscopic detection of an H-alpha emission line in a quasar beyond z=4. The overall spectral energy distribution (SED) of RX J1759.4+6638 in the near- and mid-infrared wavelengths agrees with a median SED of the nearby quasars and the flux ratio of F(Ly-alpha)/F(H-alpha) is consistent with those of previous reports for lower-redshift quasars.Comment: 9pages, 3 figures, Publications of the Astronomical Society of Japan, in pres

    Multi-wavelength analysis of 18um-selected galaxies in the AKARI/IRC monitor field towards the North Ecliptic Pole

    Full text link
    We present an initial analysis of AKARI 18um-selected galaxies using all 9 photometric bands at 2-24um available in the InfraRed Camera (IRC), in order to demonstrate new capabilities of AKARI cosmological surveys. We detected 72 sources at 18um in an area of 50.2 arcmin^2 in the AKARI/IRC monitor field towards the North Ecliptic Pole (NEP). From this sample, 25 galaxies with probable redshifts z>~ 0.5 are selected with a single colour cut (N2-N3>0.1) for a detailed SED analysis with ground-based BVRi'z'JK data. Using an SED radiative transfer model of starbursts covering the wavelength range UV -- submm, we derive photometric redshifts from the optical-MIR SEDs of 18um-selected galaxies. From the best-fit SED models, we show that the IRC all-band photometry is capable of tracing the steep rise in flux at the blue side of the PAH 6.2um emission feature. This indicates that the IRC all-band photometry is useful to constrain the redshift of infrared galaxies, specifically for dusty galaxies with a less prominent 4000A break. Also, we find that the flux dip between the PAH 7.7 and 11.2um emission feature is recognizable in the observed SEDs of galaxies at z~1. By using such a colour anomaly due to the PAH and silicate absorption features, unique samples of ULIRGs at z~1, `silicate-break' galaxies, can be constructed from large cosmological surveys of AKARI towards the NEP, i.e. the NEP-Deep and NEP-Wide survey. This pilot study suggests the possibility of detecting many interesting galaxy properties in the NEP-Deep and Wide surveys, such as a systematic difference in SEDs between high- and low-z ULIRGs, and a large variation of the PAH inter-band strength ratio in galaxies at high redshifts. [abridged]Comment: Accepted for publication in PASJ, AKARI special issu

    Near-infrared and Mid-infrared Spectroscopy with the Infrared Camera (IRC) for AKARI

    Full text link
    The Infrared Camera (IRC) is one of the two instruments on board the AKARI satellite. In addition to deep imaging from 1.8-26.5um for the pointed observation mode of the AKARI, it has a spectroscopic capability in its spectral range. By replacing the imaging filters by transmission-type dispersers on the filter wheels, it provides low-resolution (lambda/d_lambda ~ 20-120) spectroscopy with slits or in a wide imaging field-of-view (approximately 10'X10'). The IRC spectroscopic mode is unique in space infrared missions in that it has the capability to perform sensitive wide-field spectroscopic surveys in the near- and mid-infrared wavelength ranges. This paper describes specifications of the IRC spectrograph and its in-orbit performance.Comment: 13 pages, 7 figures, accepted for publication on PAS

    The Infrared Camera (IRC) for AKARI - Design and Imaging Performance

    Full text link
    The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the near- to mid-infrared (1.8--26.5um) in the pointed observation mode of AKARI. IRC is also operated in the survey mode to make an all-sky survey at 9 and 18um. It comprises three channels. The NIR channel (1.8--5.5um) employs a 512 x 412 InSb array, whereas both the MIR-S (4.6--13.4um) and MIR-L (12.6--26.5um) channels use 256 x 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 10' x 10' and are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about $25' away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature and evolution of solar system objects. The in-flight performance of IRC has been confirmed to be in agreement with the pre-flight expectation. This paper summarizes the design and the in-flight operation and imaging performance of IRC.Comment: Publications of the Astronomical Society of Japan, in pres

    AKARI infrared imaging of reflection nebulae IC4954 and IC4955

    Full text link
    We present the observations of the reflection nebulae IC4954 and IC4955 region with the Infrared Camera (IRC) and the Far-Infrared Surveyor (FIS) on board the infrared astronomical satellite AKARI during its performance verification phase. We obtained 7 band images from 7 to 160um with higher spatial resolution and higher sensitivities than previous observations. The mid-infrared color of the S9W (9um) and L18W (18um) bands shows a systematic variation around the exciting sources. The spatial variation in the mid-infrared color suggests that the star-formation in IC4954/4955 is progressing from south-west to north-east. The FIS data also clearly resolve two nebulae for the first time in the far-infrared. The FIS 4-band data from 65um to 160um allow us to correctly estimate the total infrared luminosity from the region, which is about one sixth of the energy emitted from the existing stellar sources. Five candidates for young stellar objects have been detected as point sources for the first time in the 11um image. They are located in the red S9W to L18W color regions, suggesting that current star-formation has been triggered by previous star-formation activities. A wide area map of the size of about 1 x 1 (deg^2) around the IC4954/4955 region was created from the AKARI mid-infrared all-sky survey data. Together with the HI 21cm data, it suggests a large hollow structure of a degree scale, on whose edge the IC4954/4955 region has been created, indicating star formation over three generations in largely different spatial scales.Comment: 23 pages, 7 figures, accepted for publication in PASJ AKARI special issu

    Rocketborne instrument to search for infrared emission from baryonic dark matter in galactic halos

    Get PDF
    We describe the design and performance of the near IR telescope experiment (NITE), a rocket-borne instrument designed to search for IR emission from baryonic dark matter in the halos of nearby edge-on spiral galaxies. A 256 X 256 InSb array at the focus of a 16.5 cm liquid-helium- cooled telescope achieves near-background-limited sensitivity in a 3.5-5.5 micrometers waveband where the local foreground from zodiacal emission is at a minimum. This experiment represents the first scientific application of a low-background IR InSb array, a precursor to the InSb arrays intended for SIRTF, in a space-borne observation. We describe the flight performance of the instrument and preliminary scientific result from an observation of NGC 4565

    Detection of a Thick Disk in the edge-on Low Surface Brightness Galaxy ESO 342-G017: I. VLT Photometry in V and R Bands

    Get PDF
    We report the detection of a thick disk in the edge-on, low surface brightness (LSB), late-type spiral ESO 342-G017, based on ultra-deep images in the V and R bands obtained with the VLT Test Camera during Science Verification on UT1. All steps in the reduction procedure are fully described, which, together with an extensive analysis of systematic and statistic uncertainties, has resulted in surface brightness photometry that is reliable for the detection of faint extended structure to a level of V = 27.5 and R = 28.5 mag/square arcsec. The faint light apparent in these deep images is well-modeled by a thick exponential disk with an intrinsic scale height about 2.5 times that of the thin disk, and a comparable or somewhat larger scale length. Deprojection including the effects of inclination and convolution with the PSF allow us to estimate that the thick disk contributes 20-40% of the total (old) stellar disk luminosity of ESO 342-G017. To our knowledge, this is the first detection of a thick disk in an LSB galaxy, which are generally thought to be rather unevolved compared to higher surface brightness galaxies.Comment: Accepted for publication in Astronomy & Astrophysics; 18 pages, 12 figure
    corecore