77 research outputs found

    Electrophoresis of electrically neutral porous spheres induced by selective affinity of ions

    Get PDF
    We investigate the possibility that electrically neutral porous spheres electrophorese in electrolyte solutions with asymmetric affinity of ions to spheres on the basis of electrohydrodynamics and the Poisson-Boltzmann and Debye-Bueche-Brinkman theories. Assuming a weak electric field and ignoring the double-layer polarization, we obtain analytical expressions for electrostatic potential, electrophoretic mobility, and flow field. In the equilibrium state, the Galvani potential forms across the interface of the spheres. Under a weak electric field, the spheres show finite mobility with the same sign as the Galvani potential. When the radius of the spheres is significantly larger than the Debye and hydrodynamic screening length, the mobility monotonically increases with increasing salinity.Comment: 11pages, 6 figure

    Analytical interfacial layer model for the capacitance and electrokinetics of charged aqueous interfaces

    Get PDF
    We construct an analytical model to account for the influence of the subnanometer-wide interfacial layer on the differential capacitance and the electro-osmotic mobility of solid–electrolyte interfaces. The interfacial layer is incorporated into the Poisson–Boltzmann and Stokes equations using a box model for the dielectric properties, the viscosity, and the ionic potential of mean force. We calculate the differential capacitance and the electro-osmotic mobility as a function of the surface charge density and the salt concentration, both with and without steric interactions between the ions. We compare the results from our theoretical model with experimental data on a variety of systems (graphite and metallic silver for capacitance and titanium oxide and silver iodide for electro-osmotic data). The differential capacitance of silver as a function of salinity and surface charge density is well reproduced by our theory, using either the width of the interfacial layer or the ionic potential of mean force as the only fitting parameter. The differential capacitance of graphite, however, needs an additional carbon capacitance to explain the experimental data. Our theory yields a power-law dependence of the electro-osmotic mobility on the surface charge density for high surface charges, reproducing the experimental data using both the interfacial parameters extracted from molecular dynamics simulations and fitted interfacial parameters. Finally, we examine different types of hydrodynamic boundary conditions for the power-law behavior of the electro-osmotic mobility, showing that a finite-viscosity layer explains the experimental data better than the usual hydrodynamic slip boundary condition. Our analytical model thus allows us to extract the properties of the subnanometer-wide interfacial layer by fitting to macroscopic experimental data

    Ubiquitous preferential water adsorption to electrodes in water/1-propanol mixtures detected by electrochemical impedance spectroscopy

    Full text link
    The electric double layer is an important structure that appears at charged liquid interfaces, and it determines the performance of various electrochemical devices such as supercapacitors and electrokinetic energy converters. Here the double-layer capacitance of the interface between aluminum electrodes and water/1-propanol electrolyte solutions is investigated using electrochemical impedance spectroscopy. The double-layer capacitances of mixture solvents are almost the same as those of water-only electrolyte solutions, and the double-layer capacitance of 1-propanol-only solutions are significantly smaller than those of other volume fractions of water. The qualitative variation of the double-layer capacitances with the water volume fraction is independent of the electrolyte types and their concentrations. Therefore, these results can be explained by ubiquitous preferential water adsorption caused by the hydrophilicity of the electrode surface.Comment: 7 pages, 5 figure

    Power-law electrokinetic behavior as a direct probe of effective surface viscosity

    Get PDF
    An exact solution to the Poisson-Boltzmann and Stokes equations is derived to describe the electric double layer with inhomogeneous dielectric and viscosity profiles in a lateral electric field. In the limit of strongly charged surfaces and low salinity, the electrokinetic flow magnitude follows a power law as a function of the surface charge density. Remarkably, the power-law exponent is determined by the interfacial dielectric constant and viscosity, the latter of which has eluded experimental determination. Our approach provides a novel method to extract the effective interfacial viscosity from standard electrokinetic experiments. We find good agreement between our theory and experimental data

    The effects of ion adsorption on the potential of zero charge and the differential capacitance of charged aqueous interfaces

    Get PDF
    Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson–Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights

    Nanomolar Surface-Active Charged Impurities Account for the Zeta Potential of Hydrophobic Surfaces

    Get PDF
    The electrification of hydrophobic surfaces is an intensely debated subject in physical chemistry. We theoretically study the ζ potential of hydrophobic surfaces for varying pH and salt concentration by solving the Poisson–Boltzmann and Stokes equations with individual ionic adsorption affinities. Using the ionic surface affinities extracted from the experimentally measured surface tension of the air–electrolyte interface, we first show that the interfacial adsorption and repulsion of small inorganic ions such as H3O+, OH–, HCO3–, and CO32– cannot account for the ζ potential observed in experiments because the surface affinities of these ions are too small. Even if we take hydrodynamic slip into account, the characteristic dependence of the ζ potential on pH and salt concentration cannot be reproduced. Instead, to explain the sizable experimentally measured ζ potential of hydrophobic surfaces, we assume minute amounts of impurities in the water and include the impurities’ acidic and basic reactions with water. We find good agreement between our predictions and the reported experimental ζ potential data of various hydrophobic surfaces if we account for impurities that consist of a mixture of weak acids (pKa = 5–7) and weak bases (pKb = 12) at a concentration of the order of 10–7 M
    • 

    corecore