15,089 research outputs found

    ASCA Slew Survey

    Get PDF
    We are systematically analyzing ASCA GIS data taken during the satellite attitude maneuver operation. Our motivation is to search for serendipitous hard X-ray sources and make the ASCA Slew Survey catalog. During its operational life from 1993 February to 2000 July, ASCA carried out more than 2,500 maneuver operations, and total exposure time during the maneuver was ~415 ksec after data screening. Preliminary results are briefly reported.Comment: Proceedings for "X-ray surveys in the light of new observations", Santander (Spain), 2002 September. 1 pag

    Staggered magnetism in LiV2_2O4_4 at low temperatures probed by the muon Knight shift

    Full text link
    We report on the muon Knight shift measurement in single crystals of LiV2O4. Contrary to what is anticipated for the heavy-fermion state based on the Kondo mechanism, the presence of inhomogeneous local magnetic moments is demonstrated by the broad distribution of the Knight shift at temperatures well below the presumed "Kondo temperature" (T∗≃30T^*\simeq 30 K). Moreover, a significant fraction (≃10\simeq10 %) of the specimen gives rise to a second component which is virtually non-magnetic. These observations strongly suggest that the anomalous properties of LiV2O4 originates from frustration of local magnetic moments.Comment: 11 pages, 5 figures, sbmitted to J. Phys.: Cond. Mat

    Growth of ZnO nanostructures on Si by means of plasma immersion ion implantation and deposition

    Get PDF
    Crystalline zinc oxide (ZnO) nanostructures have been grown on Si substrates by means of Plasma Based Ion Implantation and Deposition (PIII&D) at temperature of about 300 0C and in the presence of an argon glow discharge. In the process a crucible filled with small pieces of metallic zinc plays the role of the anode of the discharge itself, being polarized by positive DC voltage of about 400V. Electrons produced by thermionic emission by an oxide cathode (Ba, Sr, Ca)O impact this crucible, causing its heating and vaporization of Zn. Partial ionization of Zn atoms takes place due to collisions with plasma particles. High negative voltage pulses (7 kv/40μs/250Hz) applied to the sample holder cause the implantation of metallic zinc into Si surface, while Zn deposition happens between pulses. After annealing at 700 0C, strong UV and various visible photoluminescence bands are observed at room temperature, as well as the presence of ZnO nanoparticles. The coated surface was characterized in detail using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy. XRD indicated the presence of only ZnO peaks after annealing. The composition analysis by EDS revealed distinct Zn/O stoichiometry relation depending on the conditions of the process. AFM images showed the formation of columns in the nanoscale range. Topography viewed by SEM showed the formation of structures similar to cactus with nanothorns. Depth analysis performed by XPS indicated an increase of concentration of metallic Zn with increasing depth and the exclusive presence of ZnO for outer regions. PIII&D allowed to growing nanostructures of ZnO on Si without the need of a buffer layer

    Evolutionary origin of power-laws in Biochemical Reaction Network; embedding abundance distribution into topology

    Full text link
    The evolutionary origin of universal statistics in biochemical reaction network is studied, to explain the power-law distribution of reaction links and the power-law distributions of chemical abundances. Using cell models with catalytic reaction network, we find evidence that the power-law distribution in abundances of chemicals emerges by the selection of cells with higher growth speeds. Through the further evolution, this inhomogeneity in chemical abundances is shown to be embedded in the distribution of links, leading to the power-law distribution. These findings provide novel insights into the nature of network evolution in living cells.Comment: 11 pages, 3 figure

    Bose-Einstein droplet in free space

    Get PDF
    We show that a droplet of a Bose-Einstein condensate can be dynamically stabilized in free space by rapid oscillations of interatomic interactions between attractive and repulsive through, e.g., the Feshbach resonance. Energy dissipation, which is present in realistic situations, is found to play a crucial role to suppress dynamical instabilities inherent in nonlinear nonequilibrium systems.Comment: 5 pages, 5 figure

    Electronic energy spectra and wave functions on the square Fibonacci tiling

    Full text link
    We study the electronic energy spectra and wave functions on the square Fibonacci tiling, using an off-diagonal tight-binding model, in order to determine the exact nature of the transitions between different spectral behaviors, as well as the scaling of the total bandwidth as it becomes finite. The macroscopic degeneracy of certain energy values in the spectrum is invoked as a possible mechanism for the emergence of extended electronic Bloch wave functions as the dimension changes from one to two

    Hyperbolic Deformation Applied to S = 1 Spin Chains - Scaling Relation in Excitation Energy -

    Full text link
    We investigate excitation energies of hyperbolically deformed S = 1 spin chains, which are specified by the local energy scale f_j^{~} = \cosh j \lambda, where j is the lattice index and \lambda is the deformation parameter. The elementary excitation is well described by a quasiparticle hopping model, which is also expressed in the form of hyperbolic deformation. It is possible to estimate the excitation gap \Delta in the uniform limit \lambda \rightarrow 0, by means of a finite size scaling with respect to the system size N and the deformation parameter \lambda.Comment: 5 pages, 4 figure

    Symmetry of the Gap in Bi2212 from Photoemission Spectroscopy

    Full text link
    In a recent Letter, Shen et al have detected a large anisotropy of the superconducting gap in Bi2212, consistent with d-wave symmetry, from photoemission spectroscopy. Moreover, they claim that the change in their spectra as a function of aging is also consistent with such an intrepretation. In this Comment, I show that the latter statement is not entirely correct, in that the data as a function of aging are inconsistent with a d-wave gap but are consistent with an anisotropic s-wave gap.Comment: 3 pages (Plain TeX with macros), plus 1 postscript figur

    Energy gaps and roton structure above the nu=1/2 Laughlin state of a rotating dilute Bose-Einstein condensate

    Full text link
    Exact diagonalization study of a rotating dilute Bose-Einstein condensate reveals that as the first vortex enters the system the degeneracy of the low-energy yrast spectrum is lifted and a large energy gap emerges. As more vortices enter with faster rotation, the energy gap decreases towards zero, but eventually the spectrum exhibits a rotonlike structure above the nu=1/2 Laughlin state without having a phonon branch despite the short-range nature of the interaction.Comment: 4 pages, 4 figures, 1 tabl
    • …
    corecore