
Bose-Einstein droplet in free space

Hiroki Saito and Masahito Ueda
Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan

and CREST, Japan Science and Technology Corporation (JST), Saitama 332-0012, Japan
(Received 4 July 2004; published 15 November 2004)

A “gaseous droplet”—a stable gas that coheres by itself in free space—is shown to be produced with a
Bose-Einstein condensate. Collapse and expansion of the droplet are suppressed by rapid oscillations of the
interatomic interaction between attractive and repulsive through, e.g., the Feshbach resonance. Energy dissi-
pation, which is present in realistic situations, is found to play a crucial role in suppressing dynamical insta-
bilities that destabilize the droplet.

DOI: 10.1103/PhysRevA.70.053610 PACS number(s): 03.75.Kk, 05.45.Yv, 34.50.2s

I. INTRODUCTION

Matter-wave bright solitons have recently been realized in
a quasi one-dimensional(1D) Bose-Einstein condensate
(BEC) [1,2]. In 1D, the quantum kinetic pressure counterbal-
ances an attractive interatomic interaction, allowing a stable
bright soliton to be formed. However, in 2D or higher dimen-
sions, bright solitons are always unstable against collapse or
expansion as long as the attractive interaction is constant in
time [3].

It has been demonstrated by Abdullaevet al. [4] and by us
[3] that a BEC can be stabilized in a quasi-2D space without
a radial trapping potential by rapid oscillations of the inter-
action between attractive and repulsive through, e.g., the
Feshbach resonance[5,6]. The mechanism of the stabiliza-
tion is similar to that of an inverted pendulum, in which a
bob is stabilized above the vertically rapidly oscillating pivot
[7,8]. However, the stabilization of a BEC in 3D free space
has been elusive due to complex dynamical instabilities in-
herent in nonlinear nonequilibrium systems[4] or due to
strong collapse in a supercritical dimension[9].

In the present paper, we show that a droplet[10] of a BEC
can be stabilized in 3D free space by using oscillating inter-
actions. In order to simulate experimental situations at finite
temperature, we take into account the effect of dissipation
caused by the interaction between a BEC and a thermal
cloud. This can be incorporated in mean field theory by the
addition of a nonunitary term to the Gross-Pitaevskii(GP)
equation. This model has successfully been used to describe
damping of collective modes[11] and vortex nucleation[12].
We find that the dissipation plays a crucial role in the stabi-
lization of a BEC droplet by suppressing the dynamical in-
stabilities, and show that the droplet can indeed be stabilized
for a realistic amount of dissipation.

This paper is organized as follows. Section II introduces
the GP equation with oscillating interactions, and shows that
the dependence of the dynamics on the oscillation frequency
can be eliminated by the scaling property of the GP equation
without a trapping potential. Section III presents the main
results of this paper, that is, a BEC droplet can be stabilized
in 3D free space by use of oscillating interactions. The sta-
bility diagrams with respect to interaction and dissipative
parameters are also obtained. Section IV studies the varia-
tional analysis, and Sec. V concludes this paper.

II. THE SCALING PROPERTY OF THE GROSS-
PITAEVSKII EQUATION

We consider the GP equation in the presence of dissipa-
tion given by[11,12]
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whereg is a phenomenological dissipation constant which is
to be determined experimentally, and the trapping potential
Vtrapsr ,td and thes-wave scattering lengthastd are controlled
to vary in time. The last term on the right-hand side of Eq.
(1) is introduced to ensure the normalizationedr ucu2=N with
N being the number of atoms, where the chemical potential is
given by
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For simplicity, we assume an isotropic trapping potential

Vtrapsr ,td = f trapstd
mv2

2
r2, s3d

where f trapstd is assumed to decrease from unity att=0 to-
ward zero, and vanishes at a certain time. Thes-wave scat-
tering length is made to oscillate as

astd = f intstdsa0 + a1sinVtd, s4d

wheref intstd ramps up from 0 to 1. The ramp functionsf trapstd
and f intstd are introduced to avoid initial nonadiabatic distur-
bances that cause collapse or expansion.

Normalizing the length, time, energy, and wave function
by s" /mVd1/2;d0, V−1, "V, andÎNd0

−3/2, respectively, we
obtain the normalized form of the GP equation:
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wheregstd;4pNastd /d0; f intstdsg0+g1sin td, and the wave
function is normalized asedr ucu2=1. It should be noted that
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once the trapping potential is switched offff trapstd=0g, Eq.
(5) no longer depends onV explicitly. This implies that the
V dependence can be eliminated by appropriate scaling of
the time, length, and interaction. The dynamics at driving
frequencyaV can be reduced to those atV by rescalingt
→at , r →Îar , andastd→Îaastd. For example, if a largeV
is unavailable experimentally, we can simulate an equivalent
situation by increasing the strength of interaction and enlarg-
ing the BEC droplet.

III. NUMERICAL SIMULATIONS

We numerically solve the GP equation(5) using the
Crank-Nicholson scheme[13], where the following simple
forms of the ramp functions are used:

f trapstd = H1 − t/Ttrap s0 ø t ø Ttrapd,

0 st . Ttrapd,
J s6ad

f intstd = H1 − st/Tint − 1d2 s0 ø t ø Tintd,

1 st . Tintd.
J s6bd

We use a quadratic function forf intstd because it makes initial
nonadiabatic disturbances smaller than linear ramps.

Figure 1 shows the time evolution of the peak density
ucsr =0du2 and the monopole momentkrl;edr r ucu2 for g0

=−69 andg1=155. The dissipation constantg is taken to be
0.03 [11,12], and the ramp parameters in Eq.(6) are Ttrap
=16 andTint=10. The initial state is chosen to be the nonin-
teracting ground state for a trapping potential withv
=V /30. We find that the density and width oscillate at the
driving frequency.[The black bands in Fig. 1(a) represent
rapid oscillations ofkrl and ucs0du2 which are beyond the
resolution limit.] The amplitudes and mean values of bothkrl
and ucs0du2 converge to constant values, indicating that a
BEC droplet is dynamically stabilized. The initial distur-
bances last for a relatively long time and are shown as the
slow oscillations or ripples ofkrl and ucs0du2 in Fig. 1(a),
which gradually decay due to dissipation. From the time evo-
lution of the density profileucsrdu2 [inset in Fig. 1(b)], we
find that the droplet exhibits breathing-mode oscillations
with a large amplitude. This indicates that large oscillations
of mass flow persist even after stabilization. We find from
Fig. 1(b) that the phase of the breathing-mode oscillations of
the droplet lags slightly behind that of the oscillating inter-
action, which is shown as the dotted curve. This retardation
is considered to be due to dissipation, because there is no
phase difference in the dissipation-free 2D case[3], where
ucs0du2 and krl are in phase and out of phase with the oscil-
lating interaction, respectively.

We gradually changedg0 andg1 from those of the stable
droplet state in Fig. 1, and found three distinct types of in-
stabilities as shown in Fig. 2. Whenug0u is decreased, a drop-
let expands because of a decrease in a net attractive interac-
tion as shown in Fig. 2(a). The expansion occurs also by an
increase ing1, since the effective repulsive interaction due to
the oscillation is proportional tog1

2 [see Eq.(10)]. Whenug0u
is increased andg1 is decreased, the system becomes dy-

namically unstable against the slow oscillation and eventu-
ally expands away as shown in Fig. 2(b). The expansion
occurs despite the fact that an increase inug0u enhances the
attraction and a decrease ing1 suppresses the repulsion. The
slow oscillation is seen in the profile of the maxima of
ucs0du2 (the ripple in the upper edge), while the minima are
almost constant. Figure 2(c) shows an instability that arises
for large ug0u andg1. Since the modulation at half frequency
grows, this instability is considered to arise from parametric
resonance. The density profiles in the inset show that higher
radial modes are excited, which leads to destabilization of
the droplet.

We prepare a stable droplet in the same manner as in Fig.
1, and slowly change the parameters to different values to
obtain the stability diagram shown in Fig. 3. The parameters
g0 andg1 are changed linearly during 0ø tø600. We define
the lifetime of the droplet as the duration betweent=600 and
the time at which the droplet begins to expand indefinitely.
We find from Fig. 3(a) that the stable region is surrounded by
three distinct types of instabilities. The regions referred to as
“instability I, II, and III” in Fig. 3 correspond to the insta-
bilities illustrated in Figs. 2(a), 2(b), and 2(c), respectively.
The boundary between the “stable” and “instability I” re-
gions is sharp while the “instability II” gradually sets in as

FIG. 1. (a) Time evolution of the peak densityucsr =0du2 (left
axis) and monopole momentkrl=edr r ucu2 (right axis) for the os-
cillating interaction gstd=−69+155 sint with g=0.3. The initial
state is the noninteracting ground state in a trapping potential
r2/1800. The interaction is gradually turned on, and the trapping
potential is simultaneously turned off as shown in the inset.(b) A
magnification of(a). The inset shows the density profileucsrdu2
from t=8000 tot=8020. The dotted curve represents the oscillatory
(sine) part of the interaction in Eq.(4).
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ug0u increases andg1 decreases. The collapse occurs for large
ug0u and smallg1, but the corresponding parameter regime
lies outside the range of Fig. 3.

In Fig. 3(b), g is linearly decreased from 0.03 to 0.01 as
ug0u andg1 are(also linearly) changed. The instability regions
enlarge as compared with those of Fig. 3(a), and the stability
region disappears. From this result, we conclude that the
stability region exists only forgÞ0. However, we cannot
exclude the possibility that other stable states exist, since we
do not investigate the entire functional space.

In numerical calculations of the time evolution, we must
pay special attention to the boundary effect. Since the trap-
ping potential is absent, the atoms that escape from the drop-
let spread out, are reflected at the boundary, and return to the
droplet region, producing spurious boundary effects. For ex-
ample, when the spatial size of the calculation is reduced
from r =387 tor =116 for g0=−69 andg1=134, the lifetime
of the droplet(whose definition is the same as in Fig. 3)
changes from the correct value.3600 to.4100. Therefore,
the spatial cutoff in the numerical analysis must be much
larger than the size of the droplet.

The numerical simulations that we have presented so far
have been carried out under the assumption of the spherical
symmetry of the system. However, this geometry cannot
generate multipole dynamical instabilities that may destroy a
BEC droplet. In order to confirm the absence of such multi-
pole instabilities, we have performed full 3D calculations by
discretizing the space of 10031003100 size in our dimen-
sionless unit into a 25632563256 mesh. A limited spatial
size due to our computational power causes spurious bound-
ary effects and a rough mesh produces numerical errors.
Nevertheless, as shown in Fig. 4, snapshots of the time evo-
lution of a BEC droplet appear isotropic and do not show any
multipole instability. We have thus confirmed that a BEC
droplet can be stabilized without multipole instabilities.

IV. VARIATIONAL ANALYSIS

The Gaussian variational wave function well describes the
dynamical stabilization of BECs in 2D free space[3,4]. We

FIG. 2. Time evolution of the peak densityucsr =0du2 (left axis)
and monopole momentkrl=edr r ucu2 (right axis). The initial state is
prepared as in Fig. 1(a), and sg0,g1d are linearly changed from
(−69, 155) to (−69, 160) in (a), (−69, 129) in (b), and(−72, 173) in
(c) during 0ø tø600. The insets in(b) and (c) are magnifications
of ucsr =0du2 in the dashed squares and the density profilesucsrdu2 at
the times indicated byA andB.

FIG. 3. The lifetime of a BEC droplet after a stable state is
prepared as in Fig. 1, and the interaction is linearly changed during
0ø tø600 as in Fig. 2.(a) The black region corresponds to the one
in which a droplet expands during the change of the interaction, and
the white region corresponds to the one in which a droplet survives
until at least t=10 600. The behaviors in the regions labeled as
“instability I, II, and III” correspond to those in Figs. 2(a), 2(b), and
2(c), respectively.(b) The parameterg is also linearly changed from
g=0.03 to 0.01 during 0ø tø600 as well as the interaction.

FIG. 4. The profiles of the column density of a BEC droplet
obtained by full 3D numerical calculations. Since the isotropic sym-
metry is preserved, we obtain the same column density from any
direction. The size of the images is 12312 in units ofs" /mVd1/2.
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therefore examine the Gaussian trial function in 3D as
[14,15]

cvarsr ,td =
1

p3/4R3/2expS−
r2

2R2 + i
Ṙr2

2R
D , s7d

where R is the time-dependent variational parameter that
characterizes the size of the condensate. Substituting Eq.(7)
into the action

S=E dt dr c * S− i
]

] t
−

¹2

2
+

g

2
ucu2Dc, s8d

we obtain the equation of motion forR as

R̈= −
d

dR
S 1

2R2 +
G

6R3D , s9d

whereGstd;sg0+g1sin td / s21/2p3/2d;G0+G1sin t.
We separateR into the slowly varying partR0 and the

rapidly oscillating partr asR=R0+r. According to Ref.[7],
an effective potential forR0 is given byf1

2/ s4V2d, wheref1 is
the amplitude of the oscillating “force” forR0 and V is its
frequency. From Eq.(9), f1 corresponds toG1/ s2R0

4d. Since
we are using a system of units in whichV=1, the effective
potential becomesG1

2/ s16R0
8d, and then the equation of mo-

tion for R0 reads

R̈0 = −
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dR0
S 1

2R0
2 +

G0

6R0
3 +

G1
2

16R0
8D ; −

dUeff

dR0
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This equation agrees with that in Ref.[4] when V is much
larger than the characteristic frequencies of the system. Thus,
the oscillating interaction blocks the collapse by the effective
potential proportional toR0

−8. The above method of averaging
the rapid oscillation was also used in the context of nonlinear
Schrödinger equations in Ref.[16].

The effective potentialUeff has a local minimum for ap-
propriate values ofG0 and G1. For instance, whenG0=
−70/s21/2p3/2d andG1=140/s21/2p3/2d , Ueff has a local mini-
mum atR0.2.4. In fact, by numerically solving the equation
of motion (9) for R, we find that a stable solution exists.
However, Fig. 3(b) implies that the system is unstable
against the dynamical instability forg=0. This indicates that
the simple Gaussian function(7) is insufficient to describe
the instability of the system.

Figure 5 illustrates the difference between the density pro-
files of the stable droplet(t*8000 in Fig. 1) and the Gauss-
ian functions fitted to them. We adopt the least squares fitting
of r2ucsrdu2 to r2/ sp3/2s3dexps−r2/s2d with fitting parameter
s, which is appropriate in 3D. Figure 5 shows that the nu-
merically exact wave functions significantly deviate from the
Gaussian functions even in the stable droplet. We note that
the Gaussian function in Fig. 5(a) is almost the same as that
in Fig. 5(b). This indicates that the outer region, which has a
large weight in the fitting due to the factorr2, is almost

stationary, and the mass flow occurs mainly around the cen-
ter of the droplet. Thus, more appropriate functions are
needed to correctly describe the phenomena.

V. DISCUSSION AND CONCLUSIONS

We have studied a Bose-Einstein condensate with an os-
cillating interaction with dissipation, and shown that a BEC
droplet is stabilized in 3D free space with a realistic dissipa-
tion, g=0.03.

The frequency of the oscillating interaction must be much
faster than the characteristic frequency of the system, but it
can be a moderate frequency according to the scaling prop-
erty discussed in Sec. II. For instance, the situation in Fig. 1
can be realized in a condensate of 104 85Rb atoms by the
s-wave scattering lengthastd=−0.6+1.35 sinVt nm with V
=10032p Hz, where a trapping potential with frequency
3.3 Hz is removed in 25 ms, and the final size of the droplet
becomes a few micrometers. At this frequency of the inter-
action, the nonadiabatic atom-molecular conversion is negli-
gible, since the energy difference between atomic and mo-
lecular states is@1 MHz3" arounda=0 [17]. Oscillation
of an applied magnetic field at thisV is easily realized in
experiments[18].

Under gravity, a condensate falls after the trapping poten-
tial is turned off. In the above example, the gravitational sag
in the initial trapping potential is.2 cm, and the condensate
falls about 1 mm until the trapping potential vanishes. The
effect of gravity can be canceled out using the magnetic levi-
tation[19], which enables us to observe the long-time behav-
ior of the droplet.

The “gaseous BEC droplet” found in this paper is differ-
ent from the usual condensate in that it coheres by itself
without the help of the trapping potential. This self-trapped
matter wave might exhibit interesting dynamics, such as col-
lective modes, collapsing dynamics, and vortex nucleation,
which will be discussed elsewhere.

Note added. Recently, a paper[20] appeared which also
claims that a BEC in 3D free space is stabilized by an oscil-

FIG. 5. The density profilesucsrdu2 (solid curves) of the stable
droplet forg0=−69 andg1=155 (t*8000 in Fig. 1) when the peak
density becomes(a) maximal and(b) minimal. The dashed curves
are the Gaussian functions fitted to the density profiles.
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lating interaction. However, the size of the stabilized conden-
sate in Ref.[20] is much larger than that predicted by the
Gaussian analysis, and we find that its density profile is very
similar to that of the Townes soliton(a stationary but dy-
namically unstable solution of the GP equation) around the
central region. This implies that the stabilization in Ref.[20]
may not be due to the oscillating interaction but due to a
delicate balance between the kinetic pressure and the attrac-
tive interaction.
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