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Bose-Einstein droplet in free space
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A “gaseous droplet’—a stable gas that coheres by itself in free space—is shown to be produced with a
Bose-Einstein condensate. Collapse and expansion of the droplet are suppressed by rapid oscillations of the
interatomic interaction between attractive and repulsive through, e.g., the Feshbach resonance. Energy dissi-
pation, which is present in realistic situations, is found to play a crucial role in suppressing dynamical insta-
bilities that destabilize the droplet.
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I. INTRODUCTION II. THE SCALING PROPERTY OF THE GROSS-

Matter-wave bright solitons have recently been realized in PITAEVSKII EQUATION
a quasi one-dimensionallD) Bose-Einstein condensate  We consider the GP equation in the presence of dissipa-
(BEC) [1,2]. In 1D, the quantum kinetic pressure counterbal-tion given by[11,12
ances an attractive interatomic interaction, allowing a stable ) 9
bright soliton to be formed. However, in 2D or higher dimen- (i - y)ﬁﬁ_‘/’ - ﬁ—V2¢+V o1 D+ M|¢|Zl/l
sions, bright solitons are always unstable against collapse or at 2m trap\’ m
expansion as long as the attractive interaction is constant in .
time [3]. tlyud, (1)

It has been demonstrated by Abdullashal. [4] and by us  wherey is a phenomenological dissipation constant which is
[3] that a BEC can be stabilized in a quasi-2D space withouto be determined experimentally, and the trapping potential
a radial trapping potential by rapid oscillations of the inter-V,,(r ,t) and thes-wave scattering length(t) are controlled
action between attractive and repulsive through, e.g., theo vary in time. The last term on the right-hand side of Eq.
Feshbach resonang6,6]. The mechanism of the stabiliza- (1) is introduced to ensure the normalizatifafr |4/=N with
tion is similar to that of an inverted pendulum, in which a N being the number of atoms, where the chemical potential is
bob is stabilized above the vertically rapidly oscillating pivot given by
[7,8]. However, the stabilization of a BEC in 3D free space 5 5
has been elusive due to complex dynamical instabilities in- = J dr g* (_ ﬁ—V2+Vtrap(r,t) + MWP) .
herent in nonlinear nonequilibrium systerf$] or due to 2m m
strong collapse in a supercritical dimensi&@j. 2)

In the present paper, we show that a dropl€f of a BEC
can be stabilized in 3D free space by using oscillating inter- For simplicity, we assume an isotropic trapping potential
actions. In order to simulate experimental situations at finite M2
temperature, we take into account the effect of dissipation Viragll 1) = ftrap(t)Trz. 3
caused by the interaction between a BEC and a thermal
cloud. This can be incorporated in mean field theory by thewhere f,,t) is assumed to decrease from unityta® to-
addition of a nonunitary term to the Gross-PitaevgdP)  ward zero, and vanishes at a certain time. $hveave scat-
equation. This model has successfully been used to descrilering length is made to oscillate as
damping of collective moddg4.1] and vortex nucleatiofil2]. .

We find that the dissipation plays a crucial role in the stabi- a(t) = fin(t) (@ + asin QY), (4)
lization of a BEC droplet by suppressing the dynamical in-wheref;,(t) ramps up from 0 to 1. The ramp functiofig{t)
stabilities, and show that the droplet can indeed be stabilizegndf, (t) are introduced to avoid initial nonadiabatic distur-
for a realistic amount of dissipation. bances that cause collapse or expansion.

This paper is organized as follows. Section Il introduces Normalizing the length, time, energy, and wave function
the GP equation with oscillating interactions, and shows thag, (hImQ)Y2=d,, Q71 #Q, and v‘Nd{)w, respectively, we

the dependgnce of the dynamics on the oscillation frequencgbtain the normalized form of the GP equation:
can be eliminated by the scaling property of the GP equation a0 i 5
without a trapping potential. Section IIl presents the main , J¥ _ V"~ tra w\" 5 2,

results of this paper, that is, a BEC droplet can be stabilized( v gt~ 2 v+ 2 (Q) RAUURALZS

in 3D free space by use of oscillating interactions. The sta- (5)
bility diagrams with respect to interaction and dissipative

parameters are also obtained. Section IV studies the variavhere g(t) =4mNa(t)/dy= f;«(t)(go+g;Sint), and the wave
tional analysis, and Sec. V concludes this paper. function is normalized agdr|{?=1. It should be noted that
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once the trapping potential is switched 6ff,4(t)=0], Eq.

(5) no longer depends ofd explicitly. This implies that the

) dependence can be eliminated by appropriate scaling of
the time, length, and interaction. The dynamics at driving
frequencyaf) can be reduced to those 8t by rescalingt
—at, r —ar, anda(t)— Jaa(t). For example, if a larg€

is unavailable experimentally, we can simulate an equivalent
situation by increasing the strength of interaction and enlarg-
ing the BEC droplet.

IIl. NUMERICAL SIMULATIONS

We numerically solve the GP equatiqi®) using the !
Crank-Nicholson schem§gl3], where the following simple
forms of the ramp functions are used:
1 _t/Ttrap (O SEES Ttrap)a
fragt) = 6
trap() {0 (t>Ttrap)v ( 3)
1- (t/Tint - 1)2 (0 st=< Tint),
fin() = 6b
int(t) { 1 t>T.. (6b) —/
We use a quadratic function fég,(t) because it makes initial gooo V 8010 3023
nonadiabatic disturbances smaller than linear ramps. t

Figure 1 shows the time evolution of the peak density
|y(r=0)|> and the monopole momext)= [dr r|? for g,
=-69 andg;=155. The dissipation constamtis taken to be
0.03[11,12, and the ramp parameters in E®) are Ty,
=16 andT;,;=10. The initial state is chosen to be the nonin-

t_eracting grqund state for a trapping potent_ial with potential is simultaneously turned off as shown in the indatA
=(/30. We find that the density and width oscillate at themagnification of(a). The inset shows the density profile(r)|2

driving frequency.[The black bands in Fig. (& represent rom (=8000 tot=8020. The dotted curve represents the oscillatory
rapid oscillations of(r) and |(0)|? which are beyond the (sing part of the interaction in Eq4).
resolution limit] The amplitudes and mean values of bth

and |y(0)|” converge to constant values, indicating that anamically unstable against the slow oscillation and eventu-
BEC droplet is dynamically stabilized. The initial distur- ally expands away as shown in Fig(b2 The expansion
bances last for a relatively long time and are shown as thgccurs despite the fact that an increasdgi enhances the
slow oscillations or ripples ofr) and [(0)|* in Fig. X&),  attraction and a decreasedn suppresses the repulsion. The
which gradually decay due to dissipation. From the time evosjow oscillation is seen in the profile of the maxima of
lution of the density profilgy(r)|? [inset in Fig. 1b)], we  |4{(0)|? (the ripple in the upper edgewhile the minima are
find that the droplet exhibits breathing-mode oscillationsaimost constant. Figure(@ shows an instability that arises
with a large amplitude. This indicates that large oscillationsfor large|go| andg;. Since the modulation at half frequency
of mass flow persist even after stabilization. We find fromgrows, this instability is considered to arise from parametric
Fig. 1(b) that the phase of the breathing-mode oscillations okesonance. The density profiles in the inset show that higher
the droplet lags slightly behind that of the oscillating inter- radial modes are excited, which leads to destabilization of
action, which is shown as the dotted curve. This retardatiofhe droplet.
is considered to be due to dissipation, because there is no We prepare a stable droplet in the same manner as in Fig.
phase difference in the dissipation-free 2D cf3k where 1, and slowly change the parameters to different values to
|(0)[* and(r) are in phase and out of phase with the oscil-obtain the stability diagram shown in Fig. 3. The parameters
lating interaction, respectively. go andg, are changed linearly during<Ot=<600. We define
We gradually changed, andg; from those of the stable the lifetime of the droplet as the duration betwée®00 and
droplet state in Fig. 1, and found three distinct types of in-the time at which the droplet begins to expand indefinitely.
stabilities as shown in Fig. 2. Whégy| is decreased, a drop- We find from Fig. 3a) that the stable region is surrounded by
let expands because of a decrease in a net attractive interabree distinct types of instabilities. The regions referred to as
tion as shown in Fig. @). The expansion occurs also by an “instability I, 1l, and Ill” in Fig. 3 correspond to the insta-
increase irgy, since the effective repulsive interaction due to bilities illustrated in Figs. @), 2(b), and 2c), respectively.
the oscillation is proportional tgf [see Eq(10)]. When|g| The boundary between the “stable” and “instability 1" re-
is increased andj, is decreased, the system becomes dygions is sharp while the “instability 11" gradually sets in as

FIG. 1. (a) Time evolution of the peak densily/(r=0)[? (left
axis) and monopole momer(t)=[dr r|? (right axi9 for the os-
cillating interaction g(t)=-69+155 sirt with y=0.3. The initial
state is the noninteracting ground state in a trapping potential
r2/1800. The interaction is gradually turned on, and the trapping
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FIG. 3. The lifetime of a BEC droplet after a stable state is
prepared as in Fig. 1, and the interaction is linearly changed during
0=<t=<600 as in Fig. 2(a) The black region corresponds to the one
in which a droplet expands during the change of the interaction, and
the white region corresponds to the one in which a droplet survives
until at leastt=10 600. The behaviors in the regions labeled as
“instability I, 11, and III” correspond to those in Figs(®, 2(b), and
2(c), respectively(b) The parametey is also linearly changed from
y=0.03 to 0.01 during &t=<600 as well as the interaction.

FIG. 2. Time evolution of the peak densi(r =0)|? (left axis) . . .
and monopole momexit)= [dr |42 (right axis. The initial state is The numerical simulations that we have presented so far

prepared as in Fig. &), and (go,gy) are linearly changed from have been carried out under the assumption of the spherical
(~69, 155 to (~69, 160 in (a), (69, 129 in (b), and(~72, 173 in symmetry of }he system. However, t.h|s geometry cannot
() during 0<t=600. The insets iffb) and (c) are magnifications generate multipole dynamlcall instabilities that may destroy.a
of |y(r=0)|2 in the dashed squares and the density profils|? at BEC 'drople't.._ln order to confirm the absence of suc_h multi-
the times indicated byA andB. pole instabilities, we have performed full 3D calculations by
discretizing the space of 1060100X 100 size in our dimen-

lgol increases ang, decreases. The collapse occurs for Iargesmnless unit into a 258 256X 256 mesh. A limited spatial

lgol and smallg,, but the corresponding parameter regimesize due to our computational power causes spurious bound-

Iieos outside thel}an e of Fig. 3 ary effects and a rough mesh produces numerical errors.
In Fig. ab), y is IgiJnearIy g.ecfeased from 0.03 1o 0.01 as Nevertheless, as shown in Fig. 4, snapshots of the time evo-

Igo| andg, are(also linearly changed. The instability regions lution of a BEC droplet appear isotropic and do not show any

X . - multipole instability. We have thus confirmed that a BEC
enlarge as compared with those of Figai3and the stability 1o+ can be stabilized without multipole instabilities.
region disappears. From this result, we conclude that the
stability region exists only fory# 0. However, we cannot
exclude the possibility that other stable states exist, since we

do not investigate the entire functional space. The Gaussian variational wave function well describes the

In numerical calculations of the time evolution, we mustdynamical stabilization of BECs in 2D free spa@4]. We
pay special attention to the boundary effect. Since the trap-

ping potential is absent, the atoms that escape from the drop-
let spread out, are reflected at the boundary, and return to the
droplet region, producing spurious boundary effects. For ex-
ample, when the spatial size of the calculation is reduced
from r=387 tor=116 forgy=—69 andg,=134, the lifetime

of the droplet(whose definition is the same as in Fig. 3 FIG. 4. The profiles of the column density of a BEC droplet
changes from the correct valu€3600 to=4100. Therefore, obtained by full 3D numerical calculations. Since the isotropic sym-
the spatial cutoff in the numerical analysis must be muchmetry is preserved, we obtain the same column density from any
larger than the size of the droplet. direction. The size of the images is %22 in units of(%/mQ)Y2

IV. VARIATIONAL ANALYSIS
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therefore examine the Gaussian trial function in 3D as (a) (b)
[14,15 ' !

0.008

1 2 Rr? 2
e 4 [y
uadr ,t) = 3/4R3/2eXp< R +1 oR ) , (7) v

where R is the time-dependent variational parameter that
characterizes the size of the condensate. Substituting7kq.
into the action

Gaussian
0.004 | e / lv)*
Gaussian L

) 0 5 100 5 10
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= [ atay ( -z e ® ; °

FIG. 5. The density profileh(r)|? (solid curve$ of the stable

we obtain the equation of motion fét as droplet forgo=-69 andg; =155 (t=8000 in Fig. 3 when the peak
density becomega) maximal and(b) minimal. The dashed curves
. d ( 1 N G ) ) are the Gaussian functions fitted to the density profiles.
- dR\2R? 6R®/’

stationary, and the mass flow occurs mainly around the cen-
ter of the droplet. Thus, more appropriate functions are
needed to correctly describe the phenomena.

whereG(t) = (go+g;sint)/ (2Y2732) = G+ G,sint.

We separateR into the slowly varying parfR, and the
rapidly oscillating parp asR=Ry+p. According to Ref[7],
an effective potential foR, is given byf/(4Q?), wheref, is

the amplitude of the oscillating “force” foR, and () i; its V. DISCUSSION AND CONCLUSIONS

frequency. From Eq(9), f, corresponds t(Gll(ZRg‘). Since

we are using a system of units in whi€bh=1, the effective We have studied a Bose-Einstein condensate with an os-

potential become&2/(16R5), and then the equation of mo- cillating interaction with dissipation, and shown that a BEC

tion for R, reads droplet is stabilized in 3D free space with a realistic dissipa-
tion, y=0.03.

d The frequency of the oscillating interaction must be much
( — (10) faster than the characteristic frequency of the system, but it
dRy \ 2R 6R§ 16R; dRy can be a moderate frequency according to the scaling prop-
erty discussed in Sec. Il. For instance, the situation in Fig. 1
This equation agrees with that in Ré#] when() is much  can be realized in a condensate of' #8Rb atoms by the
larger than the characteristic frequencies of the system. Thus;wave scattering length(t)=—0.6+1.35 sif)t nm with Q
the oscillating interaction blocks the collapse by the effective=100x 27 Hz, where a trapping potential with frequency
potential proportional t(RO The above method of averaging 3.3 Hz is removed in 25 ms, and the final size of the droplet
the rapid oscillation was also used in the context of nonlineabecomes a few micrometers. At this frequency of the inter-

e 1 G Gi)z_dueff

Schrddinger equations in RgfL6]. action, the nonadiabatic atom-molecular conversion is negli-
The effective potentiaUgs has a local minimum for ap- gible, since the energy difference between atomic and mo-
propriate values ofG, and G,. For instance, wherG,=  lecular states is>1 MHz X7 arounda=0 [17]. Oscillation

-70/(2Y2732) and G, =140/(2Y27%2), U has a local mini-  of an applied magnetic field at th@ is easily realized in
mum atRy=2.4. In fact, by numerically solving the equation experimentg18].
of motion (9) for R, we find that a stable solution exists.  Under gravity, a condensate falls after the trapping poten-
However, Fig. 8b) implies that the system is unstable tial is turned off. In the above example, the gravitational sag
against the dynamical instability far=0. This indicates that in the initial trapping potential is=2 cm, and the condensate
the simple Gaussian functio?) is insufficient to describe falls about 1 mm until the trapping potential vanishes. The
the instability of the system. effect of gravity can be canceled out using the magnetic levi-
Figure 5 illustrates the difference between the density protation[19], which enables us to observe the long-time behav-
files of the stable droplegt=8000 in Fig. 3 and the Gauss- ior of the droplet.
ian functions fitted to them. We adopt the least squares fitting The “gaseous BEC droplet” found in this paper is differ-
of r2[y(r)|? to r?/(m*?c3)exp(-r?/ o?) with fitting parameter ent from the usual condensate in that it coheres by itself
o, which is appropriate in 3D. Figure 5 shows that the nu-without the help of the trapping potential. This self-trapped
merically exact wave functions significantly deviate from the matter wave might exhibit interesting dynamics, such as col-
Gaussian functions even in the stable droplet. We note thdéctive modes, collapsing dynamics, and vortex nucleation,
the Gaussian function in Fig(&® is almost the same as that which will be discussed elsewhere.
in Fig. 5b). This indicates that the outer region, which has a Note addedRecently, a papef20] appeared which also
large weight in the fitting due to the factwf, is almost claims that a BEC in 3D free space is stabilized by an oscil-
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