18 research outputs found

    School census autumn 2017 : 16 to 19 reports : user guide

    Get PDF
    The synthesis of a series of cobalt NHC complexes of the types [CoĀ­(NHC)<sub>2</sub>(CO)Ā­(NO)] (NHC = <i>i</i>Pr<sub>2</sub>Im (<b>2</b>), <i>n</i>Pr<sub>2</sub>Im (<b>3</b>), Cy<sub>2</sub>Im (<b>4</b>), Me<sub>2</sub>Im (<b>5</b>), <i>i</i>Pr<sub>2</sub>ImMe (<b>6</b>), Me<sub>2</sub>ImMe (<b>7</b>), Me<i>i</i>PrIm (<b>8</b>), Me<i>t</i>BuIm (<b>9</b>); R<sub>2</sub>Im = 1,3-dialkylimidazolin-2-ylidene) and [CoĀ­(NHC)Ā­(CO)<sub>2</sub>(NO)] (NHC = <i>i</i>Pr<sub>2</sub>Im (<b>13</b>), <i>n</i>Pr<sub>2</sub>Im (<b>14</b>), Me<sub>2</sub>Im (<b>15</b>), <i>i</i>Pr<sub>2</sub>ImMe (<b>16</b>), Me<sub>2</sub>ImMe (<b>17</b>), Me<i>i</i>PrIm (<b>18</b>), Me<i>t</i>BuIm (<b>19</b>)) from the reaction of the NHC with [CoĀ­(CO)<sub>3</sub>(NO)] (<b>1</b>) is reported. These complexes have been characterized using elemental analysis, IR spectroscopy, multinuclear NMR spectroscopy, and in many cases by X-ray crystallography. Bulky NHCs tend to form the mono-NHC-substituted complexes [CoĀ­(NHC)Ā­(CO)<sub>2</sub>(NO)], even from the reaction with an stoichiometric excess of the NHC, as demonstrated by the synthesis of [CoĀ­(Dipp<sub>2</sub>Im)Ā­(CO)<sub>2</sub>(NO)] (<b>11</b>), [CoĀ­(Mes<sub>2</sub>Im)Ā­(CO)<sub>2</sub>(NO)] (<b>12</b>), and [CoĀ­(<sup>Me</sup>cAAC)Ā­(CO)<sub>2</sub>(NO)] (<b>20</b>). For <i>t</i>Bu<sub>2</sub>Im a preferred coordination via the NHC backbone (ā€œabnormalā€ coordination at the 4-position) was observed and the complex [CoĀ­(<i>t</i>Bu<sub>2</sub><sup>a</sup>Im)Ā­(CO)<sub>2</sub>(NO)] (<b>10</b>) was isolated. All of these complexes are volatile, are stable upon sublimation and prolonged storage in the gas phase, and readily decompose at higher temperatures. Furthermore, DTA/TG analyses revealed that the complexes [CoĀ­(NHC)<sub>2</sub>(CO)Ā­(NO)] are seemingly more stable toward thermal decomposition in comparison to the complexes [CoĀ­(NHC)Ā­(CO)<sub>2</sub>(NO)]. We thus conclude that the cobalt complexes of the type [CoĀ­(NHC)Ā­(CO)<sub>2</sub>(NO)] and [CoĀ­(NHC)<sub>2</sub>(CO)Ā­(NO)] have potential for application as precursors in the vapor deposition of thin cobalt films

    From NHC to Imidazolyl Ligand: Synthesis of Platinum and Palladium Complexes d<sup>10</sup>-[M(NHC)<sub>2</sub>] (M = Pd, Pt) of the NHC 1,3-Diisopropylimidazolin-2-ylidene

    No full text
    The widely held belief that N-heterocyclic carbenes (NHCs) act only as innocent spectator ligands is not always accurate, even in the context of well-explored reactions. Ligand exchange in the conversion of [PtĀ­(PPh<sub>3</sub>)<sub>2</sub>(Ī·<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)] (<b>3</b>) to [PtĀ­(<i>i</i>Pr<sub>2</sub>Im)<sub>2</sub>] (<b>2</b>) depends critically on the particular reaction conditions employed, with slight changes leading to vastly different outcomes. In addition to [PtĀ­(<i>i</i>Pr<sub>2</sub>Im)<sub>2</sub>] (<b>2</b>), complexes [PtĀ­(<i>i</i>Pr<sub>2</sub>Im)Ā­(PPh<sub>3</sub>)Ā­(Ī·<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)] (<b>5</b>) and <i>trans</i>-[PtĀ­(<i>i</i>Pr<sub>2</sub>Im)<sub>2</sub>(<i>i</i>Pr-Im*)Ā­(H)] (<b>6</b>) were isolated and in the case of <b>6</b> fully characterized. Complex <b>5</b> represents the first mixed-olefin complex in transition metal chemistry containing both an NHC and a phosphine ligand. Chemical degradation of the NHC was shown to yield the new imidazole-2-yl <i>i</i>Pr-Im* in <b>6</b>. Therefore, the synthesis of [PtĀ­(<i>i</i>Pr<sub>2</sub>Im)<sub>2</sub>] (<b>2</b>) via metallic reduction of the ionic precursor [PtĀ­(<i>i</i>Pr<sub>2</sub>Im)<sub>3</sub>(Cl)]<sup>+</sup>Cl<sup>ā€“</sup> (<b>9</b>) is favorable, a procedure adaptable to analogous palladium compounds. While [PdĀ­(<i>i</i>Pr<sub>2</sub>Im)<sub>3</sub>(Cl)]<sup>+</sup>Cl<sup>ā€“</sup> (<b>8</b>) is the only product obtained from the reaction of <i>i</i>Pr<sub>2</sub>Im and PdCl<sub>2</sub>, neutral [PtĀ­(<i>i</i>Pr<sub>2</sub>Im)<sub>2</sub>(Cl)<sub>2</sub>] (<b>10</b>), formed as a mixture of its two stereoisomers <i><b>cis</b></i><b>-10</b> and <i><b>trans</b></i><b>-10</b>, is available through precise control of the stoichiometry in the reaction of PtCl<sub>2</sub> and exactly 2 equiv of <i>i</i>Pr<sub>2</sub>Im

    Synthesis and Reactivity of Cyclic (Alkyl)(Amino)Carbene Stabilized Nickel Carbonyl Complexes

    No full text
    Cyclic (alkyl)Ā­(amino)Ā­carbenes cAAC<sup>cy</sup> (<b>1b</b>) and cAAC<sup>menthyl</sup> (<b>1c</b>) react with [NiĀ­(CO)<sub>4</sub>] to give the 18 VE complexes [NiĀ­(CO)<sub>3</sub>(cAAC<sup>cy</sup>)] (<b>2b</b>) and [NiĀ­(CO)<sub>3</sub>(cAAC<sup>menthyl</sup>)] (<b>2c</b>). With these in hand, the donor-strength and the steric profile of the respective cAAC ligands were evaluated. CAAC<sup>cy</sup> and cAAC<sup>menthyl</sup> possess similar overall-donating properties (Tolman electronic parameter (TEP) = 2046 (<b>1b</b>) and 2042 (<b>1c</b>)) as common NHCs, though they are also known to be better Ļ€-acceptors. 3,3-Diamino-2-aryloxyacrylimidamide <b>3b</b>, arising from the reaction of cAAC<sup>cy</sup> (<b>1b</b>) with released CO molecules, was obtained as side-product of CO substitution reactions at nickel carbonyls. In contrast to cAAC<sup>menthyl</sup> (%<i>V</i><sub>bur</sub> = 42), the sterically less encumbered cAAC<sup>cy</sup> (%<i>V</i><sub>bur</sub> = 38) undergoes a subsequent CO substitution at [NiĀ­(CO)<sub>3</sub>(cAAC<sup>Cy</sup>)] (<b>2b</b>) to afford the 16 VE complex [NiĀ­(CO)Ā­(cAAC<sup>cy</sup>)<sub>2</sub>] (<b>4b</b>). Treatment of both [NiĀ­(CO)<sub>3</sub>(cAAC<sup>methyl</sup>)] (<b>2a</b>) and [NiĀ­(CO)Ā­(cAAC<sup>methyl</sup>)<sub>2</sub>] (<b>4a</b>) with allyl bromides led to the formation of cAAC-stabilized allyl nickel complexes [NiBrĀ­(Ī·<sup>3</sup>-H<sub>2</sub><i>C</i>ī—»<i>C</i>Hā€“<i>C</i>H<sub>2</sub>)Ā­(cAAC<sup>methyl</sup>)] (<b>5a</b>) and [NiBrĀ­(Ī·<sup>3</sup>-H<sub>2</sub><i>C</i>ī—»<i>C</i>Hā€“<i>C</i>Me<sub>2</sub>)Ā­(cAAC<sup>methyl</sup>)] (<b>5b</b>). The chloro complex [NiClĀ­(Ī·<sup>3</sup>-H<sub>2</sub><i>C</i>ī—»<i>C</i>Meā€“<i>C</i>H<sub>2</sub>)Ā­(cAAC<sup>methyl</sup>)] (<b>6</b>) was synthesized from [NiĀ­(COD)<sub>2</sub>] (COD = 1,5-cyclooctadiene) by consecutive treatment with allyl chloride and cAAC. The allyl halide complexes <b>5</b> and <b>6</b> are thermally labile and decompose in solution already within a few hours at room temperature. One of the decomposition products, the dinuclear nickel complex [Ni<sub>2</sub>(Ī¼-Br)<sub>2</sub>(Ī·<sup>3</sup>-(<i>cAAC</i><sup>methyl</sup>)ī—»<i>C</i>Hā€“<i>C</i>HĀ­(CH<sub>3</sub>))<sub>2</sub>] (<b>7</b>), was crystallographically characterized

    Synthesis and Reactivity of Cyclic (Alkyl)(Amino)Carbene Stabilized Nickel Carbonyl Complexes

    No full text
    Cyclic (alkyl)Ā­(amino)Ā­carbenes cAAC<sup>cy</sup> (<b>1b</b>) and cAAC<sup>menthyl</sup> (<b>1c</b>) react with [NiĀ­(CO)<sub>4</sub>] to give the 18 VE complexes [NiĀ­(CO)<sub>3</sub>(cAAC<sup>cy</sup>)] (<b>2b</b>) and [NiĀ­(CO)<sub>3</sub>(cAAC<sup>menthyl</sup>)] (<b>2c</b>). With these in hand, the donor-strength and the steric profile of the respective cAAC ligands were evaluated. CAAC<sup>cy</sup> and cAAC<sup>menthyl</sup> possess similar overall-donating properties (Tolman electronic parameter (TEP) = 2046 (<b>1b</b>) and 2042 (<b>1c</b>)) as common NHCs, though they are also known to be better Ļ€-acceptors. 3,3-Diamino-2-aryloxyacrylimidamide <b>3b</b>, arising from the reaction of cAAC<sup>cy</sup> (<b>1b</b>) with released CO molecules, was obtained as side-product of CO substitution reactions at nickel carbonyls. In contrast to cAAC<sup>menthyl</sup> (%<i>V</i><sub>bur</sub> = 42), the sterically less encumbered cAAC<sup>cy</sup> (%<i>V</i><sub>bur</sub> = 38) undergoes a subsequent CO substitution at [NiĀ­(CO)<sub>3</sub>(cAAC<sup>Cy</sup>)] (<b>2b</b>) to afford the 16 VE complex [NiĀ­(CO)Ā­(cAAC<sup>cy</sup>)<sub>2</sub>] (<b>4b</b>). Treatment of both [NiĀ­(CO)<sub>3</sub>(cAAC<sup>methyl</sup>)] (<b>2a</b>) and [NiĀ­(CO)Ā­(cAAC<sup>methyl</sup>)<sub>2</sub>] (<b>4a</b>) with allyl bromides led to the formation of cAAC-stabilized allyl nickel complexes [NiBrĀ­(Ī·<sup>3</sup>-H<sub>2</sub><i>C</i>ī—»<i>C</i>Hā€“<i>C</i>H<sub>2</sub>)Ā­(cAAC<sup>methyl</sup>)] (<b>5a</b>) and [NiBrĀ­(Ī·<sup>3</sup>-H<sub>2</sub><i>C</i>ī—»<i>C</i>Hā€“<i>C</i>Me<sub>2</sub>)Ā­(cAAC<sup>methyl</sup>)] (<b>5b</b>). The chloro complex [NiClĀ­(Ī·<sup>3</sup>-H<sub>2</sub><i>C</i>ī—»<i>C</i>Meā€“<i>C</i>H<sub>2</sub>)Ā­(cAAC<sup>methyl</sup>)] (<b>6</b>) was synthesized from [NiĀ­(COD)<sub>2</sub>] (COD = 1,5-cyclooctadiene) by consecutive treatment with allyl chloride and cAAC. The allyl halide complexes <b>5</b> and <b>6</b> are thermally labile and decompose in solution already within a few hours at room temperature. One of the decomposition products, the dinuclear nickel complex [Ni<sub>2</sub>(Ī¼-Br)<sub>2</sub>(Ī·<sup>3</sup>-(<i>cAAC</i><sup>methyl</sup>)ī—»<i>C</i>Hā€“<i>C</i>HĀ­(CH<sub>3</sub>))<sub>2</sub>] (<b>7</b>), was crystallographically characterized

    Symmetrical P<sub>4</sub> Cleavage at Cobalt: Characterization of Intermediates on the Way from P<sub>4</sub> to Coordinated P<sub>2</sub> Units

    No full text
    Degradation of white phosphorus (P<sub>4</sub>) in the coordination sphere of transition metals is commonly divided into two major pathways depending on the P<sub><i>x</i></sub> ligands obtained. Consecutive metal-assisted Pā€“P bond cleavage of four bonds of the P<sub>4</sub> tetrahedron leads to complexes featuring two P<sub>2</sub> ligands (symmetric cleavage) or one P<sub>3</sub> and one P<sub>1</sub> ligand (asymmetric cleavage). A systematic investigation of the degradation of white phosphorus P<sub>4</sub> to coordinated Ī¼,Ī·<sup>2:2</sup>-bridging diphosphorus ligands in the coordination sphere of cobalt is presented herein as well as isolation of each of the decisive intermediates on the reaction pathway. The olefin complex [Cp*CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)Ā­(Ī·<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)], <b>1</b> (Cp* = Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>, <sup><i>i</i></sup>Pr<sub>2</sub>Im = 1,3-di-isopropylimidazolin-2-ylidene), reacts with P<sub>4</sub> to give [Cp*CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)Ā­(Ī·<sup>2</sup>-P<sub>4</sub>)], <b>2</b>, the insertion product of [Cp*CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)] into one of the Pā€“P bonds. Addition of a further equivalent of the Co<sup>I</sup> complex [Cp*CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)Ā­(Ī·<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)], <b>1</b>, induces cleavage of a second Pā€“P bond to yield the dinuclear complex [{Cp*CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)}<sub>2</sub>(Ī¼,Ī·<sup>2:2</sup>-P<sub>4</sub>)], <b>3</b>, in which a kinked cyclo-P<sub>4</sub><sup>4ā€“</sup> ligand bridges two cobalt atoms. Consecutive dissociation of the N-heterocyclic carbene with concomitant rearrangement of the cyclo-P<sub>4</sub> ligand and Pā€“P dissociation leads to complexes [Cp*CoĀ­(Ī¼,Ī·<sup>4:2</sup>-P<sub>4</sub>)Ā­CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)Ā­Cp*], <b>4</b>, featuring a P<sub>4</sub> chain, and [{Cp*CoĀ­(Ī¼,Ī·<sup>2:2</sup>-P<sub>2</sub>)}<sub>2</sub>], <b>5</b>, in which two isolated P<sub>2</sub><sup>2ā€“</sup> ligands bridge two [Cp*Co] fragments. Each of these reactions is quantitative if performed on an NMR scale, and each compound can be isolated in high yields and large quantities

    Symmetrical P<sub>4</sub> Cleavage at Cobalt: Characterization of Intermediates on the Way from P<sub>4</sub> to Coordinated P<sub>2</sub> Units

    No full text
    Degradation of white phosphorus (P<sub>4</sub>) in the coordination sphere of transition metals is commonly divided into two major pathways depending on the P<sub><i>x</i></sub> ligands obtained. Consecutive metal-assisted Pā€“P bond cleavage of four bonds of the P<sub>4</sub> tetrahedron leads to complexes featuring two P<sub>2</sub> ligands (symmetric cleavage) or one P<sub>3</sub> and one P<sub>1</sub> ligand (asymmetric cleavage). A systematic investigation of the degradation of white phosphorus P<sub>4</sub> to coordinated Ī¼,Ī·<sup>2:2</sup>-bridging diphosphorus ligands in the coordination sphere of cobalt is presented herein as well as isolation of each of the decisive intermediates on the reaction pathway. The olefin complex [Cp*CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)Ā­(Ī·<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)], <b>1</b> (Cp* = Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>, <sup><i>i</i></sup>Pr<sub>2</sub>Im = 1,3-di-isopropylimidazolin-2-ylidene), reacts with P<sub>4</sub> to give [Cp*CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)Ā­(Ī·<sup>2</sup>-P<sub>4</sub>)], <b>2</b>, the insertion product of [Cp*CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)] into one of the Pā€“P bonds. Addition of a further equivalent of the Co<sup>I</sup> complex [Cp*CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)Ā­(Ī·<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)], <b>1</b>, induces cleavage of a second Pā€“P bond to yield the dinuclear complex [{Cp*CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)}<sub>2</sub>(Ī¼,Ī·<sup>2:2</sup>-P<sub>4</sub>)], <b>3</b>, in which a kinked cyclo-P<sub>4</sub><sup>4ā€“</sup> ligand bridges two cobalt atoms. Consecutive dissociation of the N-heterocyclic carbene with concomitant rearrangement of the cyclo-P<sub>4</sub> ligand and Pā€“P dissociation leads to complexes [Cp*CoĀ­(Ī¼,Ī·<sup>4:2</sup>-P<sub>4</sub>)Ā­CoĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)Ā­Cp*], <b>4</b>, featuring a P<sub>4</sub> chain, and [{Cp*CoĀ­(Ī¼,Ī·<sup>2:2</sup>-P<sub>2</sub>)}<sub>2</sub>], <b>5</b>, in which two isolated P<sub>2</sub><sup>2ā€“</sup> ligands bridge two [Cp*Co] fragments. Each of these reactions is quantitative if performed on an NMR scale, and each compound can be isolated in high yields and large quantities

    Cā€“Br Activation of Aryl Bromides at Ni<sup>0</sup>(NHC)<sub>2</sub>: Stoichiometric Reactions, Catalytic Application in Suzukiā€“Miyaura Cross-Coupling, and Catalyst Degradation

    No full text
    Complex [Ni<sub>2</sub>(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>4</sub>(COD)] (<b>1</b>) (<sup><i>i</i></sup>Pr<sub>2</sub>Im = 1,3-diisopropylimidazolin-2-ylidene) is a very efficient catalyst for the Suzukiā€“Miyaura cross-coupling reaction of 4-bromotoluene with phenylboronic acid and also mediates the Ullmann-type homo-cross-coupling reaction of bromobenzene with a moderate efficiency. Stoichiometric reactions of complex <b>1</b> with aryl bromides (ArBr) at room temperature lead to mixtures of aryl bromo complexes of the type <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)Ā­(Ar)] and the bisĀ­(bromo) complex <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)<sub>2</sub>] <b>2</b>. The complexes <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)Ā­(Ar)] (for Ar = Ph <b>3</b>, 4-MeC<sub>6</sub>H<sub>4</sub> <b>4</b>, 4-MeĀ­(O)Ā­CC<sub>6</sub>H<sub>4</sub> <b>5</b>, 4-MeOC<sub>6</sub>H<sub>4</sub> <b>6</b>, 4-MeSC<sub>6</sub>H<sub>4</sub> <b>7</b>, 4-Me<sub>2</sub>NC<sub>6</sub>H<sub>4</sub> <b>8</b>, 2-C<sub>5</sub>NH<sub>4</sub> <b>9</b>) can be selectively synthesized by working at low temperatures and using a high dilution of the starting materials. A major deactivation pathway for <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)Ā­(Ar)] was identified in the presence of aryl bromides. This deactivation process includes (i) the formation of <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)<sub>2</sub>] from <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)Ā­(Ar)] (<b>2</b>) and ArBr and (ii) the formation of an imidazolium salt of the type 2Ā­[<sup><i>i</i></sup>Pr<sub>2</sub>Im-Ar]<sup>+</sup>[NiBr<sub>4</sub>]<sup>2ā€“</sup> from <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Br)<sub>2</sub>] (<b>2</b>) and ArBr. The reactions of complex <b>2</b> with a series of aryl halides at higher temperatures lead to the decomposition of the bisĀ­(carbene) nickel moiety with formation of the imidazolium salts 2Ā­[<sup>i</sup>Pr<sub>2</sub>Im-Ar]<sup>+</sup>[NiBr<sub>2</sub>X<sub>2</sub>]<sup>2ā€“</sup> (for X = I, Ar = Ph <b>10</b> and X = Br, Ar = Ph <b>11</b>, 4-MeC<sub>6</sub>H<sub>4</sub> <b>12</b>, 4-FC<sub>6</sub>H<sub>4</sub> <b>13</b>, 4-OSiĀ­(CH<sub>3</sub>)<sub>3</sub>-C<sub>6</sub>H<sub>4</sub> <b>14</b>) in high yields

    Decisive Steps of the Hydrodefluorination of Fluoroaromatics using [Ni(NHC)<sub>2</sub>]

    No full text
    The hydrodefluorination reaction of perfluorinated arenes using [Ni<sub>2</sub>(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>4</sub>(COD)] (<b>1</b>; <sup><i>i</i></sup>Pr<sub>2</sub>Im = 1,3-bisĀ­(isopropyl)Ā­imidazolin-2-ylidene) as a catalyst as well as stoichiometric transformations to elucidate the decisive steps for this reaction are reported. The reaction of hexafluorobenzene with 5 equiv of triphenylsilane in the presence of 5 mol % of <b>1</b> affords 1,2,4,5-tetrafluorobenzene after 48 h at 60 Ā°C and 1,4-difluorobenzene after 96 h at 80 Ā°C; the reaction of perfluorotoluene and 5 equiv of Et<sub>3</sub>SiH for 4 days at 80 Ā°C results in the selective formation of 1-(CF<sub>3</sub>)-2,3,5,6-C<sub>6</sub>F<sub>4</sub>H. Stoichiometric transformations of the complexes <i>cis</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(SiPh<sub>3</sub>)] and <i>cis</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(SiMePh<sub>2</sub>)] with hexafluorobenzene at room temperature lead to the formation of <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(C<sub>6</sub>F<sub>5</sub>)] (<b>2</b>) and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(C<sub>6</sub>F<sub>5</sub>)] (<b>4</b>) with elimination of the corresponding silane or fluorosilane. The reactions of the Cā€“F activation products <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(C<sub>6</sub>F<sub>5</sub>)] (<b>2</b>) and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(4-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>)] (<b>3</b>) with PhSiH<sub>3</sub> and Ph<sub>2</sub>SiH<sub>2</sub> afford the hydride complexes <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(C<sub>6</sub>F<sub>5</sub>)] (<b>4</b>) and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(4-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>)] (<b>5</b>), which convert into the compounds <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(2,3,5,6-C<sub>6</sub>F<sub>4</sub>H)] (<b>7</b>), <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] (<b>9a</b>), and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>), respectively. In the case of the rearrangement of <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(4-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>)] (<b>5</b>) the intermediate [NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Ī·<sup>2</sup>-<i>C</i>,<i>C</i>-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>H)] (<b>8</b>) was detected. Reaction of <b>8</b> with perfluorotoluene gave the Cā€“F activation product <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(4-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>)] (<b>3</b>). All these experimental findings point to a mechanism for the HDF by [NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>] via the ā€œfluoride routeā€ involving Cā€“F activation of the polyfluoroarene, H/F exchange of the resulting nickel fluoride, reductive elimination of the polyfluoroaryl nickel hydride to an intermediate with a Ī·<sup>2</sup>-C,C-coordinated arene ligand, subsequent ligand exchange with the higher fluorinated polyfluoroarene, and renewed Cā€“F activation of the polyfluoroarene. Without additional reagents, [NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Ī·<sup>2</sup>-<i>C</i>,<i>C</i>-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>H)] (<b>8</b>) rearranges to the isomers <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] (<b>9a</b>; major) and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>; minor) in a ratio of 80:20. DFT calculations performed on conversion of <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(4-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>)] <b>5</b> into the two products <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] <b>9a</b> and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>) using the commonly accepted intramolecular concerted pathway via Ī·<sup>2</sup>-C,F-Ļƒ-bound transition states predict <b>9b</b> to be the major product. We thus propose that this reaction mechanism is not valid for the [Ni(NHC)<sub>2</sub>]-mediated Cā€“F activation of partially fluorinated arenes with special substitution patterns

    Decisive Steps of the Hydrodefluorination of Fluoroaromatics using [Ni(NHC)<sub>2</sub>]

    No full text
    The hydrodefluorination reaction of perfluorinated arenes using [Ni<sub>2</sub>(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>4</sub>(COD)] (<b>1</b>; <sup><i>i</i></sup>Pr<sub>2</sub>Im = 1,3-bisĀ­(isopropyl)Ā­imidazolin-2-ylidene) as a catalyst as well as stoichiometric transformations to elucidate the decisive steps for this reaction are reported. The reaction of hexafluorobenzene with 5 equiv of triphenylsilane in the presence of 5 mol % of <b>1</b> affords 1,2,4,5-tetrafluorobenzene after 48 h at 60 Ā°C and 1,4-difluorobenzene after 96 h at 80 Ā°C; the reaction of perfluorotoluene and 5 equiv of Et<sub>3</sub>SiH for 4 days at 80 Ā°C results in the selective formation of 1-(CF<sub>3</sub>)-2,3,5,6-C<sub>6</sub>F<sub>4</sub>H. Stoichiometric transformations of the complexes <i>cis</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(SiPh<sub>3</sub>)] and <i>cis</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(SiMePh<sub>2</sub>)] with hexafluorobenzene at room temperature lead to the formation of <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(C<sub>6</sub>F<sub>5</sub>)] (<b>2</b>) and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(C<sub>6</sub>F<sub>5</sub>)] (<b>4</b>) with elimination of the corresponding silane or fluorosilane. The reactions of the Cā€“F activation products <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(C<sub>6</sub>F<sub>5</sub>)] (<b>2</b>) and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(4-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>)] (<b>3</b>) with PhSiH<sub>3</sub> and Ph<sub>2</sub>SiH<sub>2</sub> afford the hydride complexes <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(C<sub>6</sub>F<sub>5</sub>)] (<b>4</b>) and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(4-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>)] (<b>5</b>), which convert into the compounds <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(2,3,5,6-C<sub>6</sub>F<sub>4</sub>H)] (<b>7</b>), <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] (<b>9a</b>), and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>), respectively. In the case of the rearrangement of <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(4-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>)] (<b>5</b>) the intermediate [NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Ī·<sup>2</sup>-<i>C</i>,<i>C</i>-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>H)] (<b>8</b>) was detected. Reaction of <b>8</b> with perfluorotoluene gave the Cā€“F activation product <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(4-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>)] (<b>3</b>). All these experimental findings point to a mechanism for the HDF by [NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>] via the ā€œfluoride routeā€ involving Cā€“F activation of the polyfluoroarene, H/F exchange of the resulting nickel fluoride, reductive elimination of the polyfluoroaryl nickel hydride to an intermediate with a Ī·<sup>2</sup>-C,C-coordinated arene ligand, subsequent ligand exchange with the higher fluorinated polyfluoroarene, and renewed Cā€“F activation of the polyfluoroarene. Without additional reagents, [NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(Ī·<sup>2</sup>-<i>C</i>,<i>C</i>-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>H)] (<b>8</b>) rearranges to the isomers <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] (<b>9a</b>; major) and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>; minor) in a ratio of 80:20. DFT calculations performed on conversion of <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(H)Ā­(4-(CF<sub>3</sub>)Ā­C<sub>6</sub>F<sub>4</sub>)] <b>5</b> into the two products <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(3-(CF<sub>3</sub>)-2,4,5-C<sub>6</sub>F<sub>3</sub>H)] <b>9a</b> and <i>trans</i>-[NiĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Im)<sub>2</sub>(F)Ā­(2-(CF<sub>3</sub>)-3,4,6-C<sub>6</sub>F<sub>3</sub>H)] (<b>9b</b>) using the commonly accepted intramolecular concerted pathway via Ī·<sup>2</sup>-C,F-Ļƒ-bound transition states predict <b>9b</b> to be the major product. We thus propose that this reaction mechanism is not valid for the [Ni(NHC)<sub>2</sub>]-mediated Cā€“F activation of partially fluorinated arenes with special substitution patterns

    Aryldihydroborane Coordination to Iridium and Osmium Hydrido Complexes

    No full text
    A series of iridium dihydroborate complexes [(<sup>t</sup>BuPOCOP)Ā­IrHĀ­(Īŗ<sup>2</sup>-H<sub>2</sub>BHR)] (<sup>t</sup>BuPOCOP = Īŗ<sup>3</sup>-C<sub>6</sub>H<sub>3</sub>-1,3-[OP<sup>t</sup>Bu<sub>2</sub>]<sub>2</sub>; R = Mes = 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>; R = Dur = 2,3,5,6-Me<sub>4</sub>C<sub>6</sub>H) and [LIrHĀ­(Īŗ<sup>2</sup>-H<sub>2</sub>BHDur)] (L = <sup>t</sup>BuPCP = Īŗ<sup>3</sup>-C<sub>6</sub>H<sub>3</sub>-1,3-[CH<sub>2</sub>P<sup>t</sup>Bu<sub>2</sub>]<sub>2</sub>, L = Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>) and an osmium dihydroborate compound [OsHĀ­(Īŗ<sup>2</sup>-H<sub>2</sub>BHDur)Ā­(CO)Ā­(P<sup>i</sup>Pr<sub>3</sub>)<sub>2</sub>] have been prepared by using two different synthetic strategies. The first approach is based on direct borane coordination to the metal center, whereas the second is based on a salt-elimination protocol using the lithium salts LiĀ­[H<sub>3</sub>BR] (R = Mes or Dur) and the corresponding metal halides. The compounds have been characterized by multinuclear NMR and IR spectroscopy and X-ray diffraction analysis. The results constitute the first syntheses of Īŗ<sup>2</sup>-Ļƒ:Ļƒ-dihydroborate complexes featuring bulky aryl groups
    corecore