568 research outputs found

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density

    Polarization Issues with High Power Injection and Low Power Emission in Fusion Experiments

    Get PDF
    All tokamak experiments using ECCD require setting of the beam elliptical polarization for proper coupling to the plasma. This is done either in the matching optics unit (MOU) at the output of the gyrotron, or in a couple of miter bends of the transmission line. Similarly, oblique ECE receivers require selection of the correct elliptical polarization to provide localized measurements. For the TCV tokamak at the CRPP, gyrotron and oblique-ECE polarizers are characterized during either high- or low- power testing of equipment: for the gyrotrons the behaviour is determined at a single frequency, but for the oblique-ECE the broadband response is needed. These characteristics are included in the calibration database and used during subsequent analysis of the power coupling to, or from, the sources (gyrotron, plasma, or low power transmitting antenna). A more detailed characterization has been carried out (at low power) with the MOU for the EU, 170GHz, 2MW, gyrotron prototype for ITER. This paper discusses the methodology and results of these measurements, as well as a review of nearly a decade's worth of experimental data from the 6 gyrotron, 3MW, 82.6GHz TCV system. In particular, the consistency between the calibrations and the subsequent data from tokamak experiments is analysed
    • …
    corecore