281 research outputs found

    Assessing the in vitro efficacy of biocontrol agents and oil cakes against basal rot of onion incited by Fusarium oxysporum f.sp. cepae

    Get PDF
    Onions are an important vegetable crop, which is infected by many soils and foliar pathogens. Among them, Fusarium Basal Rot (FBR) causes yield losses of up to 50 per cent in the field and 30 to 40 per cent during post-harvest storage of bulbs.  For management of basal rot of onion, the efficacy of native antagonists such as six different Trichoderma sp. (T1-T6), five different Bacillus sp. (B1-B5) and five different oil cakes was assessed against the Fusarium oxysporum f.sp. cepae under in vitro condition. Among them, T3 collected from Kulithalai recorded maximum virulence as well as dark green sporulation with conidia length of 2.68–3.25 and breadth of 2.54-3.46µ. Among the tested isolates, In the case of  Bacillus sp., isolate B4 recorded the maximum inhibition zone (66.16%), followed by B. subtilis (B5), which recorded a (59.03%) inhibition on the mycelial growth. Among the five different oil cakes, the filtrates of neem cake showed a maximum inhibition zone against F. oxysporum f.sp. cepae of 1.29 cm @ 15% concentration, followed by groundnut cake at 1.36 cm @ 30% concentration. Hence the different control measures, Trichoderma sp. showed critically acclaimed performance under in vitro than others. The combined application of Trichoderma sp, Bacillus sp and neem oilcake significantly inhibited the growth of basal rot of onion due to the presence of the antimicrobial property.   

    Stability and Bifurcation Analysis of the Caputo Fractional-Order Asymptomatic COVID-19 Model with Multiple Time-Delays

    Get PDF
    Throughout the last few decades, fractional-order models have been used in many fields of science and engineering, applied mathematics, and biotechnology. Fractional-order differential equations are beneficial for incorporating memory and hereditary properties into systems. Our paper proposes an asymptomatic COVID-19 model with three delay terms τ1,τ2,τ3 and fractional-order α. Multiple constant time delays are included in the model to account for the latency of infection in a vector. We study the necessary and sufficient criteria for stability of steady states and Hopf bifurcations based on the three constant time-delays, τ1, τ2, and τ3. Hopf bifurcation occurs in the addressed model at the estimated bifurcation points τ10, τ20, τ30, and τ10*. The numerical simulations fit to real observations proving the effectiveness of the theoretical results. Fractional-order and time-delays successfully enhance the dynamics and strengthen the stability condition of the asymptomatic COVID-19 model

    Field Evaluation of the Photo-induced Electron Transfer Fluorogenic Primers (PET) Real-time PCR for the Detection of Plasmodium falciparum in Tanzania.

    Get PDF
    Accurate diagnosis of malaria infections remains challenging, especially in the identification of submicroscopic infections. New molecular diagnostic tools that are inexpensive, sensitive enough to detect low-level infections and suitable in laboratory settings of resource-limited countries are required for malaria control and elimination programmes. Here the diagnostic potential of a recently developed photo-induced electron transfer fluorogenic primer (PET) real-time polymerase chain reaction (PCR) called PET-PCR was investigated. This study aimed to (i) evaluate the use of this assay as a method for the detection of both Plasmodium falciparum and other Plasmodium species infections in a developing country's diagnostic laboratory; and, (ii) determine the assay's sensitivity and specificity compared to a nested 18S rRNA PCR. Samples used in this study were obtained from a previous study conducted in the region of Iringa, Tanzania. A total of 303 samples from eight health facilities in Tanzania were utilized for this evaluation. All samples were screened using the multiplex PET-PCR assay designed to detect Plasmodium genus and P. falciparum initially in laboratory in Tanzania and then repeated at a reference laboratory at the CDC in the USA. Microscopy data was available for all the 303 samples. A subset of the samples were tested in a blinded fashion to find the sensitivity and specificity of the PET-PCR compared to the nested 18S rRNA PCR. Compared to microscopy, the PET-PCR assay was 59% more sensitive in detecting P. falciparum infections. The observed sensitivity and specificity were 100% (95% confidence interval (CI0.95) = 94-100%) and (CI0.95 = 96-100%), respectively, for the PET-PCR assay when compared to nested 18S rRNA PCR. When compared to 18S rRNA PCR, microscopy had a low sensitivity of 40% (CI0.95 = 23-61%) and specificity of 100% (CI0.95 = 96-100%). The PET-PCR results performed in the field laboratory in Tanzania were in 100% concordance with the results obtained at the reference laboratory in the USA. The PET-PCR is a new molecular diagnostic tool with similar performance characteristics as commonly used PCR methods that is less expensive, easy to use, and amiable to large scale-surveillance studies in developing country settings

    Effect of chemical treatment on physico-chemical properties of a novel extracted cellulosic Cryptostegia grandiflora fiber

    Get PDF
    © 2023 The Author(s). Published by IOP Publishing Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The increasing global need to achieve sustainability in product development demands the use of biodegradable materials from renewable resources in many engineering applications. Accordingly, various natural fibers were explored as suitable reinforcement in polymer matrixes due to their low density and biodegradability. Hence, in this present work, a novel fiber reinforcement was extracted from the stem of the Cryptostegia grandiflora (CG) plant through a retting process and manual intervention. The extracted Cryptostegia grandiflora fibers(CGFs)were chemically treated using NaOH and silane. Various properties like crystal structure, chemical composition, surface morphology, and thermal degradation were studied using x-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR) Scanning electron Microscopy (SEM) and Thermogravimetric analysis (TGA). The increasing cellulose content and the removal of hemicellulose after the chemical treatment indicate the potential for this CGfiber as a better reinforcement element in polymers. The increasing trend of tensile strength was observed for the CGfiber in the following order: silane > NaOH > untreated conditions. Two-stage thermal degradation was observed in all the cases where the maximum thermal degradation was found at the silane-treated CGfibers. Based on their performance, the chemically treated CGfibres can be made into composites and used for structural applications.Peer reviewe

    Differences in selective pressure on dhps and dhfr drug resistant mutations in western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the origin and spread of mutations associated with drug resistance, especially in the context of combination therapy, will help guide strategies to halt and prevent the emergence of resistance. Unfortunately, studies have assessed these complex processes when resistance is already highly prevalent. Even further, information on the evolutionary dynamics leading to multidrug-resistant parasites is scattered and limited to areas with low or seasonal malaria transmission. This study describes the dynamics of strong selection for mutations conferring resistance against sulphadoxine-pyrimethamine (SP), a combination therapy, in western Kenya between 1992 and 1999, just before SP became first-line therapy (1999). Importantly, the study is based on longitudinal data, which allows for a comprehensive analysis that contrasts with previous cross-sectional studies carried out in other endemic regions.</p> <p>Methods</p> <p>This study used 236 blood samples collected between 1992 and 1999 in the Asembo Bay area of Kenya. Pyrosequencing was used to determine the alleles of dihydrofolate reductase (<it>dhfr</it>) and dihydropterote synthase <it>(dhps) </it>genes. Microsatellite alleles spanning 138 kb around <it>dhfr </it>and <it>dhps</it>, as well as, neutral markers spanning approximately 100 kb on chromosomes 2 and 3 were characterized.</p> <p>Results</p> <p>By 1992, the South-Asian <it>dhfr </it>triple mutant was already spreading, albeit in low frequency, in this holoendemic Kenyan population, prior to the use of SP as a first-line therapy. Additionally, <it>dhfr </it>triple mutant alleles that originated independently from the predominant Southeast Asian lineage were present in the sample set. Likewise, <it>dhps </it>double mutants were already present as early as 1992. There is evidence for soft selective sweeps of two <it>dhfr </it>mutant alleles and the possible emergence of a selective sweep of double mutant <it>dhps </it>alleles between 1992 and 1997. The longitudinal structure of the dataset allowed estimation of selection pressures on various <it>dhfr </it>and <it>dhps </it>mutants relative to each other based on a theoretical model tailored to <it>P. falciparum</it>. The data indicate that drug selection acted differently on the resistant alleles of <it>dhfr </it>and <it>dhps</it>, as evidenced by fitness differences. Thus a combination drug therapy such as SP, by itself, does not appear to select for "multidrug"-resistant parasites in areas with high recombination rate.</p> <p>Conclusions</p> <p>The complexity of these observations emphasizes the importance of population-based studies to evaluate the effects of strong drug selection on <it>Plasmodium falciparum </it>populations.</p

    Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>in a subset of patients can lead to cerebral malaria (CM), a major contributor to malaria-associated mortality. Despite treatment, CM mortality can be as high as 30%, while 10% of survivors of the disease may experience short- and long-term neurological complications. The pathogenesis of CM is mediated by alterations in cytokine and chemokine homeostasis, inflammation as well as vascular injury and repair processes although their roles are not fully understood. The hypothesis for this study is that CM-induced changes in inflammatory, apoptotic and angiogenic factors mediate severity of CM and that their identification will enable development of new prognostic markers and adjunctive therapies for preventing CM mortalities.</p> <p>Methods</p> <p>Plasma samples (133) were obtained from healthy controls (HC, 25), mild malaria (MM, 48), cerebral malaria survivors (CMS, 48), and cerebral malaria non-survivors (CMNS, 12) at admission to the hospital in Jabalpur, India. Plasma levels of 30 biomarkers ((IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGF basic protein, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1 (MCAF), MIP-1α, MIP-1β, RANTES, TNF-α, Fas-ligand (Fas-L), soluble Fas (sFas), soluble TNF receptor 1 (sTNF-R1) and soluble TNF receptor 2 (sTNFR-2), PDGF bb and VEGF)) were simultaneously measured in an initial subset of ten samples from each group. Only those biomarkers which showed significant differences in the pilot analysis were chosen for testing on all remaining samples. The results were then compared between the four groups to determine their role in CM severity.</p> <p>Results</p> <p>IP-10, sTNF-R2 and sFas were independently associated with increased risk of CM associated mortality. CMNS patients had a significantly lower level of the neuroprotective factor VEGF when compared to other groups (P < 0.0045). The ratios of VEGF to IP-10, sTNF-R2, and sFas distinguished CM survivors from non survivors (P < 0.0001).</p> <p>Conclusion</p> <p>The results suggest that plasma levels of IP-10, sTNF-R2 and sFas may be potential biomarkers of CM severity and mortality. VEGF was found to be protective against CM associated mortality and may be considered for adjunctive therapy to improve the treatment outcome in CM patients.</p

    Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo

    Get PDF
    Understanding the spatial clustering of Plasmodium falciparum populations can assist efforts to contain drug-resistant parasites and maintain the efficacy of future drugs. We sequenced single nucleotide polymorphisms (SNPs) in the dihydropteroate synthase gene (dhps) associated with sulfadoxine resistance and 5 microsatellite loci flanking dhps in order to investigate the genetic backgrounds, genetic relatedness, and geographic clustering of falciparum parasites in the Democratic Republic of the Congo (DRC). Resistant haplotypes were clustered into subpopulations: one in the northeast DRC, and the other in the balance of the DRC. Network and clonal lineage analyses of the flanking microsatellites indicate that geographically-distinct mutant dhps haplotypes derive from separate lineages. The DRC is therefore a watershed for haplotypes associated with sulfadoxine resistance. Given the importance of central Africa as a corridor for the spread of antimalarial resistance, the identification of the mechanisms of this transit can inform future policies to contain drug-resistant parasite strains

    Real-Time Fluorescence Loop Mediated Isothermal Amplification for the Diagnosis of Malaria

    Get PDF
    BACKGROUND: Molecular diagnostic methods can complement existing tools to improve the diagnosis of malaria. However, they require good laboratory infrastructure thereby restricting their use to reference laboratories and research studies. Therefore, adopting molecular tools for routine use in malaria endemic countries will require simpler molecular platforms. The recently developed loop-mediated isothermal amplification (LAMP) method is relatively simple and can be improved for better use in endemic countries. In this study, we attempted to improve this method for malaria diagnosis by using a simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in one platform. We refer to this as the RealAmp method. METHODOLOGY AND SIGNIFICANT FINDINGS: Published genus-specific primers were used to test the utility of this method. DNA derived from different species of malaria parasites was used for the initial characterization. Clinical samples of P. falciparum were used to determine the sensitivity and specificity of this system compared to microscopy and a nested PCR method. Additionally, directly boiled parasite preparations were compared with a conventional DNA isolation method. The RealAmp method was found to be simple and allowed real-time detection of DNA amplification. The time to amplification varied but was generally less than 60 minutes. All human-infecting Plasmodium species were detected. The sensitivity and specificity of RealAmp in detecting P. falciparum was 96.7% and 91.7% respectively, compared to microscopy and 98.9% and 100% respectively, compared to a standard nested PCR method. In addition, this method consistently detected P. falciparum from directly boiled blood samples. CONCLUSION: This RealAmp method has great potential as a field usable molecular tool for diagnosis of malaria. This tool can provide an alternative to conventional PCR based diagnostic methods for field use in clinical and operational programs
    corecore