27 research outputs found

    The yin and yang of 15-lipoxygenase-1 and delta-desaturases: Dietary omega-6 linoleic acid metabolic pathway in prostate

    Get PDF
    One of the major components in high-fat diets (Western diet) is the omega (ω, n)-6 polyunsaturated fatty acid (PUFA) called linoleic acid (LA). Linoleic acid is the precursor for arachidonic acid (AA). These fatty acids are metabolized to an array of eicosanoids and prostaglandins depending upon the enzymes in the pathway. Aberrant expression of the catabolic enzymes such as cyclooxygenases (COX-1 and/or -2) or lipoxygenases (5-LO, 12-LO, 15-LO-1, and 15-LO-2) that convert PUFA either AA and/or LA to bioactive lipid metabolites appear to significantly contribute to the development of PCa. However, PUFA and its cellular interactions in PCa are poorly understood. We therefore examined the mRNA levels of key enzymes involved in the LA and AA pathways in 18 human donor (normal) prostates compared to 60 prostate tumors using the Affymetrix U95Av2 chips. This comparative (normal donor versus prostate cancer) study showed that: 1) the level of 15-LO-1 expression (the key enzyme in the LA pathway) is low (P < 0.001), whereas the levels of delta-5 desaturase (P < 0.001, the key enzyme in the AA pathway), delta-6 desaturase (P = 0.001), elongase (P = 0.16) and 15-lipoxygenase-2 (15-LO-2, P = 0.74) are higher in donor (normal) prostates, and 2) Contrary to the observation in the normal tissues, significantly high levels of only 15-LO-1; whereas low levels of delta-6 desaturase, elongase, delta-5 desaturase and 15-LO-2 respectively, were observed in PCa tissues. Although the cyclooxygenase (COX)-1 and COX-2 mRNA levels were high in PCa, no significant differences were observed when compared in donor tissues. Our study underscores the importance of promising dietary intervention agents such as the omega-3 fatty acids as substrate competitors of LA/AA, aimed primarily at high 15-LO-1 and COX-2 as the molecular targets in PCa initiation and/or progression

    15-Lipoxygenase-1 Expression Upregulates and Activates Insulin-Like Growth Factor-1 Receptor in Prostate Cancer Cells

    Get PDF
    We previously discovered that a fat-metabolizing enzyme, 15-lipoxygenase-1 (15-LO-1), is high in human prostate cancer (PCa) and correlates with disease progression. The biologic link between the aberrant 15-LO-1/linoleic acid (LA) metabolism and fat (which is a rich source of growth factors) in PCa is unknown. Therefore, we tested the hypothesis that the metabolic product of the polyunsaturated fatty acid LA (i.e., 13-Shydroxyoctadecadienoic acid or 13-(S)-HODE) affects the proliferation status of PCa cells through one or more growth factors. We used parental prostate cancer cell line-3 (PC-3) and engineered PC-3 cell lines [PC3-Zeo (mock-transfected), PC3-15LOS (15-LO-1-overexpressing), and PC3-15LOAS (15-LO-1-blocked)] to test our hypothesis. Of the growth factors examined, only insulin-like growth factor-1 (IGF-1) exhibited a two-fold to three-fold increase in growth response on PC3-15LOS cells compared to PC3-Zeo (control) cell line (P < .01). Insulin-like growth factor-1 receptor (IGF-1R) immunohistochemical analyses of human normal and adenocarcinoma prostate tissues, as well as levels in tumors derived from nude mice injected with PC-3 cells, demonstrated that elevated IGF-1R expression correlated with 15-LO-1 levels. Radioligand binding assays demonstrated two-fold higher IGF-1 binding sites in PC3-15LOS cells (P < .05 vs PC3-Zeo cells). IGF-1R promoter reporter assay and affinity-purified IGF-1R receptor levels demonstrated a four-fold higher activity in PC3-15LOS cells (P < .01 vs PC3-Zeo cells). IGF-1R promoter activation is 13-(S)-HODE-dependent. IGF-1R blockade with a dominant-negative adenovirus caused significant growth inhibition in PC-3 cells (P < .0001; PC3-15LOAS versus PC3-15LOS cells), as well as affected the IGF-1-stimulated mitogen-activated protein (MAP) kinase (Erk1/2) and Akt activation levels. Our study suggests that overexpression of 15-LO-1 in PCa contributes to the cancer progression by regulating IGF-1R expression and activation

    Conditional Expression of Human 15-Lipoxygenase-1 in Mouse Prostate Induces Prostatic Intraepithelial Neoplasia: The FLiMP Mouse Model

    Get PDF
    The incidence and mortality of prostate cancer (PCa) vary greatly in different geographic regions, for which lifestyle factors, such as dietary fat intake, have been implicated. Human 15-lipoxygenase-1 (h15-LO-1), which metabolizes polyunsaturated fatty acids, is a highly regulated, tissue-specific, lipid-peroxidating enzyme that functions in physiological membrane remodeling and in the pathogenesis of atherosclerosis, inflammation, and carcinogenesis. We have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN), and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM) models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate. To further define the role of 15-LO-1 in prostate carcinogenesis, we established a novel GEM model with targeted overexpression of h15-LO-1 in the prostate [human fifteen lipoxygenase-1 in mouse prostate (FLiMP)]. We used a Cre- mediated and a loxP-mediated recombination strategy to target h15-LO-1 specifically to the prostate of C57BL/6 mice. Wild-type (wt), FLiMP(+/-), and FLiMP(+/+) mice aged 7 to 21, 24 to 28, and 35 weeks were characterized by histopathology, immunohistochemistry (IHC), and DNA/RNA and enzyme analyses. Compared to wt mice, h15-LO-1 enzyme activity was increased similarly in both homozygous FLiMP(+/+) and hemizygous FLiMP(+/-) prostates. Dorsolateral and ventral prostates of FLiMP mice showed focal and progressive epithelial hyperplasia with nuclear atypia, indicative of the definition of mouse prostatic intraepithelial neoplasia (mPIN) according to the National Cancer Institute. These foci showed increased proliferation by Ki-67 IHC. No progression to invasive PCa was noted up to 35 weeks. By IHC, h15-LO-1 expression was limited to luminal epithelial cells, with increased expression in mPIN foci (similar to human HGPIN). In summary, targeted overexpression of h15-LO-1 (a gene overexpressed in human PCa and HGPIN) to mouse prostate is sufficient to promote epithelial proliferation and mPIN development. These results support 15-LO-1 as having a role in prostate tumor initiation and as an early target for dietary or other prevention strategies. The FLiMP mouse model should also be useful in crosses with other GEM models to further define the combinations of molecular alterations necessary for PCa progression

    Prostate Tumor Growth Can Be Modulated by Dietarily Targeting the 15-Lipoxygenase-1 and Cyclooxygenase-2 Enzymes1

    Get PDF
    The main objectives of our study were to determine the bioavailability of omega-3 (ω-3) to the tumor, to understand its mechanisms, and to determine the feasibility of targeting the ω-6 polyunsaturated fatty acids (PUFAs) metabolizing 15-lipoxygenase-1 (15-LO-1) and cyclooxygenase-2 (COX-2) pathways. Nude mice injected subcutaneously with LAPC-4 prostate cancer cells were randomly divided into three different isocaloric (and same percent [%] of total fat) diet groups: high ω-6 linoleic acid (LA), high ω-3 stearidonic acid (SDA) PUFAs, and normal (control) diets. Tumor growth and apoptosis were examined as end points after administration of short-term (5 weeks) ω-3 and ω-6 fatty acid diets. Tumor tissue membranes were examined for growth, lipids, enzyme activities, apoptosis, and proliferation. Tumors from the LA diet-fed mice exhibited the most rapid growth compared with tumors from the control and SDA diet-fed mice. Moreover, a diet switch from LA to SDA caused a dramatic decrease in the growth of tumors in 5 weeks, whereas tumors grew more aggressively when mice were switched from an SDA to an LA diet. Evaluating tumor proliferation (Ki-67) and apoptosis (caspase-3) in mice fed the LA and SDA diets suggested increased percentage proliferation index from the ω-6 diet-fed mice compared with the tumors from the ω-3 SDA-fed mice. Further, increased apoptosis was observed in tumors from ω-3 SDA diet-fed mice versus tumors from ω-6 diet-fed mice. Levels of membrane phospholipids of red blood cells reflected dietary changes and correlated with the levels observed in tumors. Linoleic or arachidonic acid and metabolites (eicosanoid/prostaglandins) were analyzed for 15-LO-1 and COX-2 activities by high-performance liquid chromatography. We also examined the percent unsaturated or saturated fatty acids in the total phospholipids, PUFA ω-6/ω-3 ratios, and other major enzymes (elongase, Delta [Δ]-5-desaturase, and Δ-6-desaturase) of ω-6 catabolic pathways from the tumors. We observed a 2.7-fold increase in the ω-6/ω-3 ratio in tumors from LA diet-fed mice and a 4.2-fold decrease in the ratio in tumors from the SDA diet-fed mice. There was an increased Δ-6-desaturase and Δ-9 desaturase enzyme activities and reduced estimated Δ-5-desaturase activity in tumors from mice fed the SDA diet. Opposite effects were observed in tumors from mice fed the LA diet. Together, these observations provide mechanistic roles of ω-3 fatty acids in slowing prostate cancer growth by altering ω-6/ω-3 ratios through diet and by promoting apoptosis and inhibiting proliferation in tumors by directly competing with ω-6 fatty acids for 15-LO-1 and COX-2 activities

    Overexpression of 12/15-Lipoxygenase, an Ortholog of Human 15-Lipoxygenase-1, in the Prostate Tumors of TRAMP Mice

    No full text
    Changes in the expression and activity of lipidmetabolizing enzymes, including the linoleic acid (LA)-metabolizing enzyme 15-lipoxygenase-1 (15-LO-1), may play a role in the development and progression of human prostate carcinoma (PCa). We reported that human 15-LO-1 (designated as leukocyte type 12-LO or 12/15-LO in mouse) is expressed in human prostate and increased in PCa, particularly high-grade PCa. Genetically engineered mouse (GEM) models of PCa could facilitate the study of this gene and its regulation and function in PCa progression. In this study, we examine the protein expression and enzyme activity levels of 12/15-LO associated with PCa progression in the TRansgenic Adenocarcinoma of Mouse Prostate (TRAMP) model of PCa. This GEM model develops prostatic intraepithelial neoplasia (PIN), followed by invasive gland-forming PCa and invasive and metastatic less differentiated PCa, with neuroendocrine (NE) differentiation (NE Ca). In the wild-type and TRAMP prostates, the most prominent LA metabolite was 13-hydroxyoctadecadienoic acid (13-HODE). Lesser amounts of 12-hydroxyeicosatetraenoic acid and 15-hydroxyeicosatetraenoic acid (HETE) were made from arachidonic acid (AA). In TRAMP prostates, 12/15-LO activity was increased compared to wild type at 20, 29, 39, and 49 weeks, as assessed by LA conversion to 13-HODE, and by AA conversion to 12/15-HETE, respectively. Immunostaining demonstrated that the increased capacity to generate 13-HODE was paralleled by an increase in neoplastic epithelial expression of 12/15-LO in PIN and invasive carcinomas. In conclusion, although there is a basal 12/15-LO activity in the wild-type mouse prostate, there is a marked increase in the expression of 12/15-LO with TRAMP PCa progression, paralleling our previously reported increased expression of the ortholog 15-LO-1 in high-grade human PCa. Thus, 12/15-LO and LA metabolism in the TRAMP model shares similarities to human PCa, and may allow to confirm a role for LA metabolism and other biologic functions of 15-LO-1 in human PCa. In addition, the TRAMP model will serve as a tool for testing the suitability of 12/15-LO—and ultimately human 15-LO—as a therapeutic target during PCa progression

    Modulated by Dietarily Targeting

    Get PDF
    A diet–fed mice and a 4.2-fold decrease in the ratio in tumors from the SDA diet–fed mice. There was an increased Δ-6-desaturase and Δ-9 desaturase enzyme activities and reduced estimated Δ-5-desaturase activity in tumors fr rved in tumors from mice fed the LA diet. Together, these s in 3 ra iting ω-

    False Discovery Rate (FDR) (P-value<0.05) to control the false discoveries in multiple hypothesis testing.

    No full text
    <p>False Discovery Rate (FDR) (P-value<0.05) to control the false discoveries in multiple hypothesis testing.</p

    A Novel Three Serum Phospholipid Panel Differentiates Normal Individuals from Those with Prostate Cancer

    Get PDF
    <div><p>Background</p><p>The results of prostate specific antigen (PSA) and digital rectal examination (DRE) screenings lead to both under and over treatment of prostate cancer (PCa). As such, there is an urgent need for the identification and evaluation of new markers for early diagnosis and disease prognosis. Studies have shown a link between PCa, lipids and lipid metabolism. Therefore, the aim of this study was to examine the concentrations and distribution of serum lipids in patients with PCa as compared with serum from controls.</p><p>Method</p><p>Using Electrospray ionization mass spectrometry (ESI-MS/MS) lipid profiling, we analyzed serum phospholipids from age-matched subjects who were either newly diagnosed with PCa or healthy (normal).</p><p>Results</p><p>We found that cholester (CE), dihydrosphingomyelin (DSM), phosphatidylcholine (PC), egg phosphatidylcholine (ePC) and egg phoshphatidylethanolamine (ePE) are the 5 major lipid groups that varied between normal and cancer serums. ePC 38:5, PC 40:3, and PC 42:4 represent the lipids species most prevalent in PCa as compared with normal serum. Further analysis revealed that serum ePC 38:5 ≥0.015 nmoles, PC 40.3 ≤0.001 nmoles and PC 42:4 ≤0.0001 nmoles correlated with the absence of PCa at 94% prediction. Conversely, serum ePC 38:5 ≤0.015 nmoles, PC 40:3 ≥0.001 nmoles, and PC 42:4 ≥0.0001 nmoles correlated with the presence of PCa.</p><p>Conclusion</p><p>In summary, we have demonstrated that ePC 38:5, PC 40:3, and PC 42:4 may serve as early predictive serum markers for the presence of PCa.</p></div
    corecore