21 research outputs found

    Inferring mixed-layer depth variability from Argo observations in the western Indian Ocean

    Get PDF
    The seasonal and spatial variability of mixed layer depth (MLD) was examined in the Western Indian Ocean (WIO) (30E – 80E and 10S – 30N) for three consecutive years starting from June 2002 – May 2005 using Argo temperature and salinity (T/S) profiles. These were compared with MLD estimates from World Ocean Atlas 2001 (WOA01) T/S data. Temporal and spatial variability of MLD estimated from Argo T/S profiles were found to correspond well with the MLD obtained from WOA01 T/S data. However, slight deviations in the form of months of occurrence of minima and maxima MLDs were observed. MLD from WOA01 climatology is underestimated compared to MLD from Argo for almost the entire three years of study. It is also observed that MLD variability features as brought out by both the data sets followed the dynamics that govern the mixed layer variability in this region

    Metrics for the assessment of quantity and quality of the data by Argo floats

    Get PDF
    187-192Observing system or research initiative's foundation lies on reliable in situ data from sensors, which accurately tell about various key parameters that are being measured. Argo floats had brought huge amount of ocean observational in-situ data which is widely used from analysis to modelling. Present work describes a metrics for analyzing performance of sensors on Argo floats which can be used to assess the performance of float or set of floats as a whole. A set of new metrics like Total Data Return, Quality Data Returned and Quality Data Expected are proposed including the well-known Half-Life Period utilizing all of the Argo profile data. From the analysis, temperature and sensors performance is found to be more than 80 % and average Half-Life is found to be 1065 days. These metrics provide the overall performance of the floats, and can also be applied to other similar floats deployed by other countries as well as sensors fitted on other oceanic platforms

    Classification of Ultra Fine Particles from Fly Ash

    Get PDF
    The annual generation of coal combustion residue in the country is 110 MT. The generation of coal combustion residue is expected to increase with ever increasing demand for power. Management of this solid waste has been a great concern to the nation. Most of the reports on utilization of coal combustion residue are limited to direct usage of the material or selective collection from ESP fields in the thermal power plants. In this connection several efforts are being made in the country to enhance its application as a replacement to cement, soil modifier, roads and embankments etc. Very little or no research attempts are made in understanding the appropriate compo-nents which results in beneficial properties and value added products. Fly ash in very fine size range exhibits spherical morphological characteristics and thus acts as good fillers in rubber and polymer compounds. However, recovery of this size material from the bulk is yet a challenge in the process industry as the material forms clusters at very fine sizes. The present study is an atte-mpt to beneficiate fly ash to obtain material with an average particle size around 5 microns. A cyclone separa-tor, which employs very high g* forces for separation of particles is employed for achieving the separation. At this high g* forces, the declustering of particles is observed. This technique has generated product with an average particle size (ds& between 4 to 8 microns. The results obtained at different test runs are discussed

    Heat content of the Arabian Sea Mini Warm Pool is increasing

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Science Letters 17 (2016): 39-42, doi:10.1002/asl.596.Sea surface temperature in the Arabian Sea Mini Warm Pool has been suggested to be one of the factors that affects the Indian summer monsoon. In this paper, we analyze the annual ocean heat content (OHC) of this region during 1993–2010, using in situ data, satellite observations, and a model simulation. We find that OHC increases significantly in the region during this period relative to the north Indian Ocean, and propose that this increase could have caused the decrease in Indian Summer Monsoon Rainfall that occurred at the same time

    Quantifying tropical cyclone's effect on the biogeochemical processes using profiling float observations in the Bay of Bengal

    Get PDF
    Physical and biogeochemical observations from an autonomous profiling Argo float in the Bay of Bengal show significant changes in upper ocean structure during the passage of Tropical Cyclone (TC) Hudhud (7–14 October 2014). TC Hudhud mixed water from a depth of about 50 m into the surface layers through a combination of upwelling and turbulent mixing. Mixing was extended into the depth of nutricline, the oxycline and the subsurface‐chlorophyll‐maximum; thus had a strong impact on the biogeochemistry of the upper ocean. Before the storm, the near‐surface layer was nutrient depleted and was thus oligotrophic with the chlorophyll‐a concentration of less than 0.15 mg m‐3. Storm mixing initially increased the chlorophyll by 1.4 mg m‐3, increased the surface nitrate concentration to about 6.6 μM kg‐1, and decreased the sub‐surface dissolved oxygen (30–35 m) to 31 % of saturation (140 μM). These conditions were favorable for phytoplankton growth resulting in an estimated increase in primary productivity averaging 1.5 g C m‐2 day‐1 over 15 days. During this bloom, chlorophyll‐a increased by 3.6 mg m‐3, and dissolved oxygen increased from 111 % to 123 % of saturation. Similar observations during TC Vardah (6–12 December 2016) showed much less mixing. Our analysis suggests that relatively small (high) translation speed and presence of cold (warm) core eddy leads to strong (weak) oceanic response during TC Hudhud (TC Vardah). Thus, although cyclones can cause strong biogeochemical responses in the Bay of Bengal, the strength of response depends on the properties of the storm and the prevailing upper ocean structure such as presence of mesoscale eddies

    Best practices for Core Argo floats - part 1: getting started and data considerations

    Get PDF
    Argo floats have been deployed in the global ocean for over 20 years. The Core mission of the Argo program (Core Argo) has contributed well over 2 million profiles of salinity and temperature of the upper 2000 m of the water column for a variety of operational and scientific applications. Core Argo floats have evolved such that the program currently consists of more than eight types of Core Argo float, some of which belong to second or third generation developments, three unique satellite communication systems (Argos, Iridium and Beidou) and two types of Conductivity, Temperature and Depth (CTD) sensor systems (Seabird and RBR). This, together with a well-established data management system, delayed mode data quality control, FAIR and open data access, make the program a very successful ocean observing network. Here we present Part 1 of the Best Practices for Core Argo floats in terms of how users can get started in the program, recommended metadata parameters and the data management system. The objective is to encourage new and developing scientists, research teams and institutions to contribute to the OneArgo Program, specifically to the Core Argo mission. Only by leveraging sustained contributions from current Core Argo float groups with new and emerging Argo teams and users who are eager to get involved and are actively encouraged to do so, can the OneArgo initiative be realized. This paper presents a list of best practices to get started in the program, set up the recommended metadata, implement the data management system with the aim to encourage new scientists, countries and research teams to contribute to the OneArgo Program

    More than 50 years of successful continuous temperature section measurements by the global expendable bathythermograph network, its integrability, societal benefits, and future

    Get PDF
    The first eXpendable BathyThermographs (XBTs) were deployed in the 1960s in the North Atlantic Ocean. In 1967 XBTs were deployed in operational mode to provide a continuous record of temperature profile data along repeated transects, now known as the Global XBT Network. The current network is designed to monitor ocean circulation and boundary current variability, basin-wide and trans-basin ocean heat transport, and global and regional heat content. The ability of the XBT Network to systematically map the upper ocean thermal field in multiple basins with repeated trans-basin sections at eddy-resolving scales remains unmatched today and cannot be reproduced at present by any other observing platform. Some repeated XBT transects have now been continuously occupied for more than 30 years, providing an unprecedented long-term climate record of temperature, and geostrophic velocity profiles that are used to understand variability in ocean heat content (OHC), sea level change, and meridional ocean heat transport. Here, we present key scientific advances in understanding the changing ocean and climate system supported by XBT observations. Improvement in XBT data quality and its impact on computations, particularly of OHC, are presented. Technology development for probes, launchers, and transmission techniques are also discussed. Finally, we offer new perspectives for the future of the Global XBT Network

    Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats.

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., Andre, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbeoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouet, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourles, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P., Rannou, J., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P., Velez-Belchi, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S., & Park, H. Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Frontiers in Marine Science, 7, (2020): 700, doi:10.3389/fmars.2020.00700.In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002°C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.AW, SR, and other scientists at the University of Washington (UW) were supported by the US Argo Program through the NOAA Grant NA15OAR4320063 to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) at the UW. SW and other scientists at the Woods Hole Oceanographic Institution (WHOI) were supported by the US Argo Program through the NOAA Grant NA19OAR4320074 (CINAR/WHOI Argo). The Scripps Institution of Oceanography's role in Argo was supported by the US Argo Program through the NOAA Grant NA15OAR4320071 (CIMEC). Euro-Argo scientists were supported by the Monitoring the Oceans and Climate Change with Argo (MOCCA) project, under the Grant Agreement EASME/EMFF/2015/1.2.1.1/SI2.709624 for the European Commission

    COASTAL OCEAN OBSERVING NETWORK – OPEN SOURCE ARCHITECTURE FOR DATA MANAGEMENT AND WEB-BASED DATA SERVICES

    No full text
    The observations from the oceans are the backbone for any kind of operational services, viz. potential fishing zone advisory services, ocean state forecast, storm surges, cyclones, monsoon variability, tsunami, etc. Though it is important to monitor open Ocean, it is equally important to acquire sufficient data in the coastal ocean through coastal ocean observing systems for re-analysis, analysis and forecast of coastal ocean by assimilating different ocean variables, especially sub-surface information; validation of remote sensing data, ocean and atmosphere model/analysis and to understand the processes related to air-sea interaction and ocean physics. Accurate information and forecast of the state of the coastal ocean at different time scales is vital for the wellbeing of the coastal population as well as for the socio-economic development of the country through shipping, offshore oil and energy etc. Considering the importance of ocean observations in terms of understanding our ocean environment and utilize them for operational oceanography, a large number of platforms were deployed in the Indian Ocean including coastal observatories, to acquire data on ocean variables in and around Indian Seas. The coastal observation network includes HF Radars, wave rider buoys, sea level gauges, etc. The surface meteorological and oceanographic data generated by these observing networks are being translated into ocean information services through analysis and modelling. Centralized data management system is a critical component in providing timely delivery of Ocean information and advisory services. In this paper, we describe about the development of open-source architecture for real-time data reception from the coastal observation network, processing, quality control, database generation and web-based data services that includes on-line data visualization and data downloads by various means
    corecore