142 research outputs found

    High-fidelity 3D microstructural characterization of ZrB2 during hot-pressing (Invited)

    Get PDF
    Standard ultra-high temperature ceramic (UHTC) manufacturing results in components with large differences in properties due to variability in microstructural “critical flaw” distributions. Critical flaws can be any irregularity in a component, such as a secondary phase, cracks, pores, etc. This is problematic when designing reproducible UHTC components. The goal of this project is to understand how these critical flaws evolve during hot pressing of ZrB2 (a UHTC) by examining them in 3D. This study incorporates 3D imaging such as (i) preliminary in-situ high-temperature pressureless sintering X-ray µ-CT, (ii) ex-situ X-ray µ-CT, and (iii) 3D electron imaging and backscattered diffraction data collected at different stages of densification. 3D microstructure statistics along with unique observations of individual pore and secondary phase evolution will be presented. This data is brought together to give a holistic view of the densification of ZrB2 during hot pressing at multiple length scales. This data will be incorporated into a process-structure-property (PSP) database for statistical modeling to reduce uncertainty during ZrB2 processing

    Cast aluminium single crystals cross the threshold from bulk to size-dependent stochastic plasticity

    Get PDF
    Metals are known to exhibit mechanical behaviour at the nanoscale different to bulk samples. This transition typically initiates at the micrometre scale, yet existing techniques to produce micrometre-sized samples often introduce artefacts that can influence deformation mechanisms. Here, we demonstrate the casting of micrometre-scale aluminium single-crystal wires by infiltration of a salt mould. Samples have millimetre lengths, smooth surfaces, a range of crystallographic orientations, and a diameter D as small as 6 μm. The wires deform in bursts, at a stress that increases with decreasing D. Bursts greater than 200 nm account for roughly 50% of wire deformation and have exponentially distributed intensities. Dislocation dynamics simulations show that single-arm sources that produce large displacement bursts halted by stochastic cross-slip and lock formation explain microcast wire behaviour. This microcasting technique may be extended to several other metals or alloys and offers the possibility of exploring mechanical behaviour spanning the micrometre scale

    Visualizing size-dependent deformation mechanism transition in Sn

    Get PDF
    Displacive deformation via dislocation slip and deformation twinning usually plays a dominant role in the plasticity of crystalline solids at room temperature. Here we report in situ quantitative transmission electron microscope deformation tests of single crystal Sn samples. We found that when the sample size was reduced from 450 nm down to 130 nm, diffusional deformation replaces displacive plasticity as the dominant deformation mechanism at room temperature. At the same time, the strength-size relationship changed from “smaller is stronger” to “smaller is much weaker”. The effective surface diffusivity calculated based on our experimental data matches well with that reported in literature for boundary diffusion. The observed change in the deformation mode arises from the sample size-dependent competition between the Hall-Petch-like strengthening of displacive processes and Coble diffusion softening processes. Our findings have important implications for the stability and reliability of nanoscale devices such as metallic nanogaps.National Science Foundation (U.S.) (CMMI-0728069)National Science Foundation (U.S.) (DMR-1008104)National Science Foundation (U.S.) (DMR-1120901)United States. Air Force Office of Scientific Research (FA9550-08-1-0325
    • …
    corecore