13 research outputs found

    Targeted cell imaging properties of a deep red luminescent iridium(III) complex conjugated with a c-Myc signal peptide

    Get PDF
    A nuclear localisation sequence (NLS) peptide, PAAKRVKLD, derived from the human c-Myc regulator gene, has been functionalised with a long wavelength (λex = 550 nm; λem = 677 nm) cyclometalated organometallic iridium(III) complex to give the conjugate Ir-CMYC. Confocal fluorescence microscopy studies on human fibroblast cells imaged after 18–24 h incubation show that Ir-CMYC concentrations of 80–100 μM promote good cell uptake and nuclear localisation, which was confirmed though co-localisation studies using Hoechst 33342. In comparison, a structurally related, photophysically analogous iridium(III) complex lacking the peptide sequence, Ir-PYR, showed very different biological behaviour, with no evidence of nuclear, lysosomal or autophagic vesicle localisation and significantly increased toxicity to the cells at concentrations >10 μM that induced mitochondrial dysfunction. Supporting UV-visible and circular dichroism spectroscopic studies show that Ir-PYR and Ir-CMYC display similarly low affinities for DNA (ca. 103 M−1), consistent with electrostatic binding. Therefore the translocation and nuclear uptake properties of Ir-CMYC are attributed to the presence of the PAAKRVKLD nuclear localisation sequence in this complex

    Rotation Curves in z~1-2 Star-Forming Disks: Evidence for Cored Dark Matter Distributions

    Get PDF
    We report high-quality, Hα or CO rotation curves (RCs) to several R e for 41 large, massive, star-forming disk galaxies (SFGs) across the peak of cosmic galaxy evolution (z ~ 0.67-2.45), taken with the ESO-VLT, the LBT and IRAM-NOEMA. Most RC41 SFGs have reflection-symmetric RCs plausibly described by equilibrium dynamics. We fit the major axis position-velocity cuts using beam-convolved forward modeling generated in three dimensions, with models that include a bulge and turbulent disk component embedded in a dark matter (DM) halo. We include priors for stellar and molecular gas masses, optical light effective radii and inclinations, and DM masses from abundance-matching scaling relations. Two-thirds or more of the z ≥ 1.2 SFGs are baryon dominated within a few R e of typically 5.5 kpc and have DM fractions less than maximal disks (median ⟨fDM(Re)⟩=0.12\langle {f}_{\mathrm{DM}}({R}_{e})\rangle =0.12). At lower redshift (z < 1.2), that fraction is less than one-third. DM fractions correlate inversely with the baryonic angular momentum parameter, baryonic surface density, and bulge mass. Inferred low DM fractions cannot apply to the entire disk and halo but more plausibly reflect a flattened, or cored, inner DM density distribution. The typical central "DM deficit" in these cores relative to Navarro-Frenk-White (NFW) distributions is ~30% of the bulge mass. The observations are consistent with rapid radial transport of baryons in the first-generation massive gas-rich halos forming globally gravitationally unstable disks and leading to efficient build-up of massive bulges and central black holes. A combination of heating due to dynamical friction and AGN feedback may drive DM out of the initial cusps.This work was supported in part by DFG/DIP grant STE/1869 2-1/GE 625/17-

    First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007

    Get PDF
    © 2022 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.We present a detailed analysis of the rest-frame optical emission line ratios for three spectroscopically confirmed galaxies at z > 7.5. The galaxies were identified in the James Webb Space Telescope (JWST) Early Release Observations field SMACS J0723.3 − 7327. By quantitatively comparing Balmer and oxygen line ratios of these galaxies with various low-redshift ‘analogue’ populations (e.g. Green Peas, Blueberries, etc.), we show that no single analogue population captures the diversity of line ratios of all three galaxies observed at z > 7.5. We find that S06355 at z = 7.67 and S10612 at z = 7.66 are similar to local Green Peas and Blueberries. In contrast, S04590 at z = 8.50 appears to be significantly different from the other two galaxies, most resembling extremely low-metallicity systems in the local Universe. Perhaps the most striking spectral feature in S04590 is the curiously high [O III] λ4363/[O III] λ5007 ratio (RO3) of 0.048 (or 0.055 when dust-corrected), implying either extremely high electron temperatures, >3 × 104 K, or gas densities >104 cm−3. Observed line ratios indicate that this galaxy is unlikely to host an AGN. Using photoionization modelling, we show that the inclusion of high-mass X-ray binaries or a high cosmic ray background in addition to a young, low-metallicity stellar population can provide the additional heating necessary to explain the observed high RO3 while remaining consistent with other observed line ratios. Our models represent a first step at accurately characterizing the dominant sources of photoionization and heating at very high redshifts, demonstrating that non-thermal processes may become important as we probe deeper into the Epoch of Reionization.Peer reviewe

    Galaxy kinematics and mass estimates at z ∼ 1 from ionised gas and stars

    Get PDF
    We compare ionised gas and stellar kinematics of 16 star-forming galaxies (log (M⋆/M⊙) = 9.7 − 11.2, SFR =6 − 86M⊙/yr) at z ∼ 1 using near-infrared integral field spectroscopy (IFS) of Hα emission from the KMOS3D survey and optical slit spectroscopy of stellar absorption and gas emission from the LEGA-C survey. Hα is dynamically colder than stars, with higher disc rotation velocities (by ∼45 per cent) and lower disc velocity dispersions (by a factor ∼2). This is similar to trends observed in the local Universe. We find higher rotational support for Hα relative to [OII], potentially explaining systematic offsets in kinematic scaling relations found in the literature. Regarding dynamical mass measurements, for six galaxies with cumulative mass profiles from Jeans Anisotropic Multi-Gaussian Expansion (JAM) models the Hα dynamical mass models agree remarkably well out to ∼10 kpc for all but one galaxy (average ΔΜdyn(Re, F814W) &lt; 0.1 dex). Simpler dynamical mass estimates based on integrated stellar velocity dispersion are less accurate (standard deviation 0.24 dex). Differences in dynamical mass estimates are larger, for example, for galaxies with stronger misalignments of the Hα kinematic major axis and the photometric position angle, highlighting the added value of IFS observations for dynamics studies. The good agreement between the JAM models and the dynamical models based on Hα kinematics at z ∼ 1 corroborates the validity of dynamical mass measurements from Hα IFS observations, which can be more easily obtained for higher redshift galaxies

    JADES: Resolving the Stellar Component and Filamentary Overdense Environment of HST-Dark Submillimeter Galaxy HDF850.1 at z=5.18z=5.18

    Full text link
    HDF850.1 is the brightest submillimeter galaxy (SMG) in the Hubble Deep Field. It is known as a heavily dust-obscured star-forming galaxy embedded in an overdense environment at z=5.18z = 5.18. With nine-band NIRCam images at 0.8-5.0 μ\mum obtained through the JWST Advanced Deep Extragalactic Survey (JADES), we detect and resolve the rest-frame UV-optical counterpart of HDF850.1, which splits into two components because of heavy dust obscuration in the center. The southern component leaks UV and Hα\alpha photons, bringing the galaxy ∼\sim100 times above the empirical relation between infrared excess and UV continuum slope (IRX-βUV\beta_\mathrm{UV}). The northern component is higher in dust attenuation and thus fainter in UV and Hα\alpha surface brightness. We construct a spatially resolved dust attenuation map from the NIRCam images, well matched with the dust continuum emission obtained through millimeter interferometry. The whole system hosts a stellar mass of 1011.0±0.1 M⊙10^{11.0\pm0.1}\,\mathrm{M}_\odot and star-formation rate of 103.0±0.2 M⊙ yr−110^{3.0\pm0.2}\,\mathrm{M}_\odot\,\mathrm{yr}^{-1}, placing the galaxy at the massive end of the star-forming main sequence at this epoch. We further confirm that HDF850.1 resides in a complex overdense environment at z=5.17−5.30z=5.17-5.30, which hosts another luminous SMG at z=5.30z=5.30 (GN10). The filamentary structures of the overdensity are characterized by 109 Hα\alpha-emitting galaxies confirmed through NIRCam slitless spectroscopy at 3.9-5 μ\mum, of which only eight were known before the JWST observations. Given the existence of a similar galaxy overdensity in the GOODS-S field, our results suggest that 50±2050\pm20% of the cosmic star formation at z=5.1−5.5z=5.1-5.5 occur in protocluster environments.Comment: 44 pages, 16 figures, 2 tables. Resubmitted to ApJ after including the first-round referee's comment

    JADES: The emergence and evolution of Lyα\alpha emission and constraints on the IGM neutral fraction

    Full text link
    The rest-frame UV recombination emission line Lyα\alpha can be powered by ionising photons from young massive stars in star forming galaxies, but its ability to be resonantly scattered by neutral gas complicates its interpretation. For reionization era galaxies, a neutral intergalactic medium (IGM) will scatter Lyα\alpha from the line of sight, making Lyα\alpha a useful probe of the neutral fraction evolution. Here, we explore Lyα\alpha in JWST/NIRSpec spectra from the ongoing JADES programme, which targets hundreds of galaxies in the well-studied GOODS-S and GOODS-N fields. These sources are UV-faint (−20.4<MUV<−16.4-20.4<\rm M_{\rm UV}<-16.4), and thus represent a poorly-explored class of galaxies. The low spectral resolution (R∼100R\sim100) spectra of a subset of 84 galaxies in GOODS-S with zspec>5.6z_{spec}>5.6 (as derived with optical lines) are fit with line and continuum models, in order to search for significant line emission. Through exploration of the R100 data, we find evidence for Lyα\alpha in 17 sources. This sample allows us to place observational constraints on the fraction of galaxies with Lyα\alpha emission in the redshift range 5.6<z<7.55.6<z<7.5, with a decrease from z=6z=6 to z=7z=7. We also find a positive correlation between Lyα\alpha equivalent width and MUV_{UV}, as seen in other samples. These results are used to estimate the neutral gas fraction at z∼7z\sim7, agreeing with previous results (XHI∼0.5−0.9X_{HI}\sim0.5-0.9).Comment: 18 pages, 10 figures. Accepted for publication in A&

    Rotating Starburst Cores in Massive Galaxies at z = 2.5

    Get PDF
    We present spatially resolved ALMA observations of the CO J=3-2 emission line in two massive galaxies at z=2.5 on the star-forming main sequence. Both galaxies have compact dusty star-forming cores with effective radii of Re=1.3 kpc and Re=1.2 kpc in the 870 um continuum emission. The spatial extent of star-forming molecular gas is also compact with Re=1.9 kpc and Re=2.3 kpc, but more extended than the dust emission. Interpreting the observed position-velocity diagrams with dynamical models, we find the starburst cores to be rotation-dominated with the ratio of the maximum rotation velocity to the local velocity dispersion of v/sigma=7.0 (v=386 km/s) and v/sigma_0=4.1 (v=391 km/s). Given that the descendants of these massive galaxies in the local universe are likely ellipticals with v/sigma nearly an order of magnitude lower, the rapidly rotating galaxies would lose significant net angular momentum in the intervening time. The comparisons among dynamical, stellar, gas, and dust mass suggest that the starburst CO-to-H2 conversion factor of alpha_CO=0.8 Msun/(K km/s/pc2) is appropriate in the spatially resolved cores. The dense cores are likely to be formed in extreme environments similar to the central regions of local ultraluminous infrared galaxies. Our work also demonstrates that a combination of medium-resolution CO and high-resolution dust continuum observations is a powerful tool for characterizing the dynamical state of molecular gas in distant galaxies.Comment: 6 pages, 4 figures, 1 table, accepted for publication in ApJ Letter

    BULGE-FORMING GALAXIES with AN EXTENDED ROTATING DISK at z ∼ 2

    Get PDF
    We present 0".2-resolution Atacama Large Millimeter/submillimeter Array observations at 870 um for 25 Halpha-seleced star-forming galaxies (SFGs) around the main-sequence at z=2.2-2.5. We detect significant 870 um continuum emission in 16 (64%) of these SFGs. The high-resolution maps reveal that the dust emission is mostly radiated from a single region close to the galaxy center. Exploiting the visibility data taken over a wide uvuv distance range, we measure the half-light radii of the rest-frame far-infrared emission for the best sample of 12 massive galaxies with logM*>11. We find nine galaxies to be associated with extremely compact dust emission with R_{1/2,870um}<1.5 kpc, which is more than a factor of 2 smaller than their rest-optical sizes, R_{1/2,1.6um}=3.2 kpc, and is comparable with optical sizes of massive quiescent galaxies at similar redshifts. As they have an exponential disk with Sersic index of n=1.2 in the rest-optical, they are likely to be in the transition phase from extended disks to compact spheroids. Given their high star formation rate surface densities within the central 1 kpc of Sigma SFR1kpc=40 Msol/yr/kpc^2, the intense circumnuclear starbursts can rapidly build up a central bulge with Sigma M*1kpc>1e10 Msol/kpc^2 in several hundred Myr, i.e. by z~2. Moreover, ionized gas kinematics reveal that they are rotation-supported with an angular momentum as large as that of typical SFGs at z=1-3. Our results suggest bulges are commonly formed in extended rotating disks by internal processes, not involving major mergers.Comment: 11 pages, 6 figures, 2 tables, accepted for publication in Ap

    The evolution of metallicity and metallicity gradients from z = 2.7 to 0.6 with KMOS<sup>3D</sup>

    Get PDF
    We present measurements of the [NII]/Ha ratio as a probe of gas-phase oxygen abundance for a sample of 419 star-forming galaxies at z=0.6-2.7 from the KMOS3D near-IR multi-IFU survey. The mass-metallicity relation (MZR) is determined consistently with the same sample selection, metallicity tracer, and methodology over the wide redshift range probed by the survey. We find good agreement with long-slit surveys in the literature, except for the low-mass slope of the relation at z~2.3, where this sample is less biased than previous samples based on optical spectroscopic redshifts. In this regime we measure a steeper slope than some literature results. Excluding the AGN contribution from the MZR reduces sensitivity at the high mass end, but produces otherwise consistent results. There is no significant dependence of the [NII]/Ha ratio on SFR or environment at fixed redshift and stellar mass. The IFU data allow spatially resolved measurements of [NII]/Ha, from which we can infer abundance gradients for 180 galaxies, thus tripling the current sample in the literature. The observed gradients are on average flat, with only 15 gradients statistically offset from zero at >3sigma. We have modelled the effect of beam-smearing, assuming a smooth intrinsic radial gradient and known seeing, inclination and effective radius for each galaxy. Our seeing-limited observations can recover up to 70% of the intrinsic gradient for the largest, face-on disks, but only 30% for the smaller, more inclined galaxies. We do not find significant trends between observed or corrected gradients and any stellar population, dynamical or structural galaxy parameters, mostly in agreement with existing studies with much smaller sample sizes. In cosmological simulations, strong feedback is generally required to produce flat gradients at high redshift.Comment: submitted to Ap

    Witnessing the Early Growth and Life Cycle of Galaxies with KMOS3D

    Get PDF
    Near-infrared integral field unit (IFU) spectrographs are powerful tools for investigating galaxy evolution. We report on our recently completed multi-year KMOS3D survey of Halpha, [NII] and [SII] line emission of galaxies at redshift z ~ 0.7 - 2.7 with the K-band Multi-Object Spectrograph (KMOS) at the Very Large Telescope (VLT). With deep observations of 745 targets spanning over two orders of magnitude in galaxy mass, five billion years of cosmic time, and all levels of star formation, KMOS3D provides an unparalleled population-wide census of spatially-resolved kinematics, star formation, outflows and nebular gas conditions. The dataset sheds new light on the physical mechanisms driving the early growth and lifecycle of galaxies, and provides a rich legacy for the astronomical community
    corecore