131 research outputs found

    Big Ramsey degrees and divisibility in classes of ultrametric spaces

    Full text link
    Given a countable set S of positive reals, we study finite-dimensional Ramsey-theoretic properties of the countable ultrametric Urysohn space with distances in S.Comment: 12 page

    Some new concepts of dimension and their generalization

    Get PDF

    On subgroups of minimal topological groups

    Get PDF
    A topological group is minimal if it does not admit a strictly coarser Hausdorff group topology. The Roelcke uniformity (or lower uniformity) on a topological group is the greatest lower bound of the left and right uniformities. A group is Roelcke-precompact if it is precompact with respect to the Roelcke uniformity. Many naturally arising non-Abelian topological groups are Roelcke-precompact and hence have a natural compactification. We use such compactifications to prove that some groups of isometries are minimal. In particular, if U_1 is the Urysohn universal metric space of diameter 1, the group Iso(U_1) of all self-isometries of U_1 is Roelcke-precompact, topologically simple and minimal. We also show that every topological group is a subgroup of a minimal topologically simple Roelcke-precompact group of the form Iso(M), where M is an appropriate non-separable version of the Urysohn space.Comment: To appear in Topology and its Applications. 39 page

    Beispiel eines nirgends separablen metrischen Raumes

    No full text

    Une propriété des continus de M. Knaster

    No full text

    Über ein Problem von Herrn C. Carathéodory

    No full text

    Mémoire sur les multiplicités Cantoriennes (suite)

    No full text
    Cet article est un suite d'une étude "Mémoire sur les multiplicités Cantoriennes" parus au tome VII des cet journal. Dans le troisième chapitre (le premier deux se trouvent dans la premier partie de ce mémoire) l'auteur montre la construction de quelques exemples des continus indécomposables. Dans le quatrième chapitre il établit plusieurs théorèmes concernant la dimension des ensembles fermés. Dans le cinquième chapitre l'auteur revient à l'étude de la dimension des ensembles situes dans des espaces Euclidiens E_n à un nombre quelconque de dimensions. Il généralise au cas de n quelconque les principaux résultats de chapitre II. Enfin, dans le sixième chapitre, il s'occupe du problème de la décomposition des ensembles en ensembles de dimension 0 qu'il propose d'étudier dans ce dernier chapitre
    corecore