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Abstract

A topological group is minimal if it does not admit a strictly coarser Hausdorff group topology. The Roelcke uniformity (or lower
uniformity) on a topological group is the greatest lower bound of the left and right uniformities. A group is Roelcke-precompact
if it is precompact with respect to the Roelcke uniformity. Many naturally arising non-Abelian topological groups are Roelcke-
precompact and hence have a natural compactification. We use such compactifications to prove that some groups of isometries
are minimal. In particular, if U1 is the Urysohn universal metric space of diameter 1, the group Iso(U1) of all self-isometries
of U1 is Roelcke-precompact, topologically simple and minimal. We also show that every topological group is a subgroup of a
minimal topologically simple Roelcke-precompact group of the form Iso(M), where M is an appropriate non-separable version of
the Urysohn space.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

This paper was motivated by the following questions:

Question 1.1 (V. Pestov, A. Arhangelskii, 1980’s). What are subgroups of minimal topological groups?

Question 1.2 (W. Roelcke, 1990). What are subgroups of lower precompact topological groups?

We now explain and discuss the notions of a minimal group and of a lower precompact group.
Compact spaces X can be characterized among all Tikhonov spaces by each of the following two properties:

(1) X is minimal, in the sense that X admits no strictly coarser Tikhonov (or Hausdorff) topology; (2) X is absolutely
closed, which means that X is closed in any Tikhonov space Y containing X as a subspace. One can consider the
notions of minimality and absolute closedness also for other classes of spaces. For example, for the class of Hausdorff
spaces one gets the notions of H -minimal and H -closed spaces which are no longer equivalent to each other or to
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compactness but are closely related: a space is H -minimal iff it is H -closed and semiregular, and a space is compact
iff it is H -minimal and satisfies the Urysohn separation axiom. See the survey [35] for a discussion of these notions.

Let us now consider the case of topological groups. All topological groups are assumed to be Hausdorff, unless
otherwise explicitly stated. A topological group is minimal if it does not admit a strictly coarser Hausdorff group
topology.1 A topological group is absolutely closed if it is closed in every topological group containing it as a topo-
logical subgroup. A topological group G is absolutely closed if and only if it is Rajkov-complete, or upper complete,
that is complete with respect to the upper uniformity which is defined as the least upper bound L ∨ R of the left
and the right uniformities on G. Recall that the sets {(x, y): x−1y ∈ U}, where U runs over a base at unity of G,
constitute a base of entourages for the left uniformity L on G. In the case of the right uniformity R, the condition
x−1y ∈ U is replaced by yx−1 ∈ U . We shall call Rajkov-complete groups simply complete. The Rajkov completion
Ĝ of a topological group G is the completion of G with respect to the upper uniformity L∨R. For every topological
group G the space Ĝ has a natural structure of a topological group. The group Ĝ can be defined as a unique (up to
an isomorphism) complete group containing G as a dense subgroup. A group is Weil-complete if it is complete with
respect to the left uniformity L (or, equivalently, with respect to the right uniformity R). Every Weil-complete group
is complete, but not vice versa.

Unlike the category of Hausdorff spaces, where “minimal” implies “absolutely closed”, minimal groups need not
be absolutely closed (that is, complete). If G is a minimal group, then its Rajkov completion Ĝ also is minimal. On the
other hand, if G is a dense subgroup of a minimal group H , then G is minimal if and only if for every closed normal
subgroup N �= {1} of H we have G∩N �= {1} ([3,36,41]; see historical remarks in [7, Section 2.1]). Thus the study of
minimal groups can be reduced to the study of complete minimal groups: a group G is minimal if and only if its Rajkov
completion Ĝ is minimal, and for every closed normal subgroup N �= {1} of Ĝ we have G∩N �= {1}. Compact groups
are complete minimal, and in the Abelian case the converse is also true, according to a deep theorem of Prodanov and
Stoyanov [37,9]: every complete minimal Abelian group is compact. In the non-Abelian case, the class of complete
minimal groups properly contains the class of compact groups. There exist non-compact minimal Lie groups [10,39],
and actually a discrete infinite group can be minimal [16,25]. It is natural to ask how big the difference is between the
class of compact groups and the class of complete minimal groups. For example, one can ask if the class of complete
minimal groups is closed under infinite products (this question, to the best of my knowledge, is still open; the answer
is positive for groups with a trivial center [21]), or if the relations between cardinal invariants of compact groups
remain valid for complete minimal groups, etc.

If G is a topological group, we denote by N (G) the filter of neighbourhoods of the neutral element. Besides the
left, right, and upper uniformities (denoted by L, R, and L∨R, respectively), every topological group has yet another
compatible uniformity L ∧ R, the greatest lower bound of L and R. (Note that in general the greatest lower bound
of two compatible uniformities on a topological space need not be compatible with the topology.) If U ∈ N (G), the
cover {UxU : x ∈ G} is L ∧ R-uniform, and every L ∧ R-uniform cover of G has a refinement of this form. The
uniformity L ∧ R is called the lower uniformity in [38]; we shall call it the Roelcke uniformity, in honour of Walter
Roelcke who was the first to introduce and investigate this notion.

A uniform space X is precompact if its completion is compact or, equivalently, if for every entourage U the space X

can be covered by finitely many U -small sets. A topological group G is precompact if one of the following equivalent
conditions holds:2 (1) (G,L) is precompact; (2) (G,R) is precompact; (3) (G,L ∨ R) is precompact; (4) for every
U ∈ N (G) there exists a finite set F ⊂ G such that FU = UF = G. Every Tikhonov space is a subspace of a
compact space, but not every topological group is a subgroup of a compact group: the subgroups of compact groups
are precisely precompact groups. Let us say that a topological group G is Roelcke-precompact if it is precompact with
respect to the Roelcke uniformity L∧R. Thus G is Roelcke-precompact iff for every U ∈ N (G) there exists a finite
set F ⊂ G such that UFU = G. The Roelcke completion of a topological group G is the completion of G with respect
to the Roelcke uniformity L∧R. If G is Roelcke-precompact, the Roelcke completion R(G) of G will be also called
the Roelcke compactification.

Precompact groups are Roelcke-precompact, but not vice versa [38]. For example, the unitary group of a Hilbert
space or the group Sym(E) of all permutations of a discrete set E, both considered with the pointwise convergence

1 The survey [7] on minimal groups contains a lot of information and more than a hundred references.
2 Answering a question of Walter Roelcke, I proved that these conditions are also equivalent to: (5) for every U ∈ N (G) there exists a finite set

F ⊂ G such that FUF = G. This was later rediscovered by S. Solecki and other authors. A short proof can be found in [4, Proposition 4.3].
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topology, are Roelcke-precompact but not precompact. While the left, right and upper uniformities of a subgroup of a
topological group are induced by the corresponding uniformities of the group, this is not so for the Roelcke uniformity,
and a subgroup of a Roelcke-precompact group need not be Roelcke-precompact. This justifies Question 1.2.

The aim of the present paper is to provide a complete answer to Questions 1.1 and 1.2. Let us say that a group G

is topologically simple if G has no closed normal subgroups besides G and {1}.

Main Theorem 1.3. Every topological group G is isomorphic to a subgroup of a complete minimal group which is
Roelcke-precompact, topologically simple and has the same weight as G.

“Isomorphic” means here “isomorphic as a topological group”. The weight of a topological space X is the cardinal
w(X) = min{|B|: B is a base for X}. A group G is totally minimal [8] if all Hausdorff quotient groups of G are
minimal. Since minimal topologically simple groups are totally minimal, we could write “totally minimal” instead of
“minimal” in our Main Theorem.

Let Q = [0,1]ω be the Hilbert cube, and let Homeo(Q) be the topological group of all self-homeomorphisms
of Q. The group H = Homeo(Q) is universal [44], [27, Theorem 2.2.6], in the sense that every topological group
G with a countable base is isomorphic to a topological subgroup of H . Therefore, for groups with a countable base
a natural way to prove Theorem 1.3 would be to prove that the group Homeo(Q), which is known to be simple, is
Roelcke-precompact and minimal. I do not know if Homeo(Q) indeed has these properties:

Problem 1.4. Is the group Homeo(Q) Roelcke-precompact or minimal?

There is another universal topological group with a countable base, namely the group Iso(U) of all self-isometries
of the Urysohn universal metric space U [47], [27, Theorem 2.3.1], [50, Theorem 6.1]. The group Iso(U) is not
Roelcke-precompact [50, p. 344]; I do not know whether it is minimal or not.

Problem 1.5. Is the group Iso(U) minimal?

We consider the “bounded version” U1 of the space U and show that the group Iso(U1) is Roelcke-precompact,
topologically simple and minimal. This proves Theorem 1.3 for groups with a countable base. For groups of uncount-
able weight the argument is similar, but we must consider non-separable analogues of the space U1.

Recall some definitions. A bijection between metric spaces is an isometry if it is distance-preserving. For a metric
space M we denote by Iso(M) the topological group of all isometries of M onto itself, equipped with the topology
of pointwise convergence (which coincides in this case with the compact-open topology). Let d be the metric on M .
The sets of the form UF,ε = {g ∈ Iso(M): d(g(x), x) < ε for all x ∈ F }, where F is a finite subset of M and ε > 0,
constitute a base at the unity of Iso(M).

A metric space M is ω-homogeneous if every isometry f :A → B between finite subsets A, B of M can be
extended to an isometry of M onto itself. The Urysohn universal metric space U is the unique (up to an isometry)
complete separable metric space which has either of the following two properties: (1) U is ω-homogeneous and
contains an isometric copy of every separable metric space; (2) U is finitely injective: if L is a finite metric space,
K ⊂ L and f : K → U is an isometric embedding, then f can be extended to an isometric embedding of L into U.
For the equivalence of the conditions (1) and (2), see Proposition 1.6 below (we consider there the bounded version U1
of U, but the proof for U is the same). Actually U is compactly injective as well: in the definition of finite injectivity,
one can replace finite metric spaces K ⊂ L by arbitrary compact metric spaces [17], see also [32, Lemma 5.1.19 and
Proposition 5.1.20].

We now introduce the bounded version of the space U. The diameter of a metric space (M,d) is the number
sup{d(x, y): x, y ∈ M}. Let us say that a metric space M is Urysohn if its diameter is equal to 1 and it is finitely
injective with respect to spaces of diameter � 1, that is, the following holds: if L is a finite metric space of diameter
� 1, K ⊂ L and f :K → M is an isometric embedding, then f can be extended to an isometric embedding of L

into M . It suffices if this property holds for L = K ∪ {p}. Thus a metric space M of diameter 1 is Urysohn iff
for any finite sequence x1, . . . , xn of points of M and any sequence a1, . . . , an of positive numbers � 1 such that
|ai − aj | � d(xi, xj ) � ai + aj (i, j = 1, . . . , n) there exists y ∈ M such that d(y, xi) = ai (i = 1, . . . , n). Using the
notion of a Katětov function that will be introduced later in Section 3, we can reformulate this condition as follows:
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for every finite X ⊂ M and every Katětov function f :X → [0,1] there exists y ∈ M such that d(x, y) = f (x) for
every x ∈ X.

Remark. A notation like Urysohn�1 might have been more appropriate for what we have called Urysohn (note that
the unbounded space U is not Urysohn according to our definition!). However, we shall use the shorter term, in hope
that no confusion will arise. Let us again bring to the reader’s attention that all Urysohn spaces have diameter 1.

Proposition 1.6. Let M be a metric space of diameter 1:

(1) if M is Urysohn, then M contains an isometric copy of every countable metric space of diameter � 1. If M

moreover is complete, then it contains an isometric copy of every separable metric space of diameter � 1;
(2) if M is ω-homogeneous and contains an isometric copy of every finite metric space of diameter � 1, then M is

Urysohn;
(3) if M1 and M2 are complete separable Urysohn spaces, then every isometry between finite subsets A ⊂ M1 and

B ⊂ M2 extends to an isometry between M1 and M2;
(4) a complete separable metric space of diameter 1 is Urysohn if and only if it is ω-homogeneous and contains an

isometric copy of every finite metric space of diameter � 1;
(5) there exists a unique (up to an isometry) complete separable Urysohn space U1. The space U1 is the unique

complete separable metric space of diameter � 1 which is ω-homogeneous and contains an isometric copy of
every separable metric space of diameter � 1;

(6) there exists a non-complete separable ω-homogeneous Urysohn space which contains an isometric copy of every
separable metric space of diameter � 1.

This is essentially due to Urysohn [52]. The last item was added by Katětov [20], who answered a question of
Urysohn that had remained open for more than 60 years.

Proof. (1) is obvious (use induction). To prove (2), suppose that K ⊂ L are finite metric spaces, diam(L) � 1, and
let f :K → M be an isometric embedding. Pick an isometric embedding g :L → M , and use ω-homogeneity of M to
find an isometry h of M such that h extends the isometry f (g|K)−1 :g(K) → f (K). Then hg :L → M is an isometric
embedding that extends f . For (3), enumerate dense countable subsets in M1 and M2 and use the “back-and-forth”
(or “shuttle”) method to extend the given isometry between A and B to an isometry between dense subsets of M1
and M2. Then use completeness to obtain an isometry between M1 and M2. Applying (3) in the case when M1 = M2,
we see that every complete separable Urysohn space is ω-homogeneous. Thus (4) and uniqueness in (5) follow from
(1)–(3). The existence of U1 is a special case of Theorem 3.2 that we shall prove later; the idea of the proof is due
to Katětov. The existence of a non-complete Urysohn space easily follows from Katětov’s methods presented in this
paper; we refer the reader to [20] for details. �

For the history of invention of the universal Urysohn space, see [1,43,18]. According to Alexandrov [1], Urysohn
was thinking about the universal space in the very last days of his life, and, after finishing another project on 14 August
1924, was going to work on two further papers: on metrization of normal spaces with a countable base and on the
universal space. He wrote just the first page of the first of these papers. It was dated 17 August 1924, the day of his
death.

For more on the Urysohn space, see [12,23,24,27,29,31,32,50,51], and papers in this volume. We mention the
striking result of Vershik: for a generic point d of the Polish space of metrics on a countable set X the completion
of (X,d) is isometric to the Urysohn space U [53–55]. Similarly, for a generic shift-invariant metric d on Z (= the
group of integers) the completion of the metric group (Z, d) is isometric to U [5].

The proof of Theorem 1.3 consists of two parts. We first prove that every topological group can be embedded in
the group Iso(M) of isometries of a complete ω-homogeneous Urysohn space M , and then prove that such groups of
isometries are minimal, Roelcke-precompact and topologically simple.

Theorem 1.7. For every topological group G there exists a complete ω-homogeneous Urysohn metric space M of the
same weight as G such that G is isomorphic to a subgroup of Iso(M).
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Theorem 1.8. If M is a complete ω-homogeneous Urysohn metric space, then the group Iso(M) is complete, Roelcke-
precompact, minimal and topologically simple. The weight of Iso(M) is equal to the weight of M .

Theorem 1.3 follows from Theorems 1.7 and 1.8.
The proof of Theorem 1.7 depends on Katětov’s construction that leads to a canonical embedding of any met-

ric space M into a finitely injective space. In the non-separable case this construction must be complemented by a
construction of a natural embedding of a metric space into an ω-homogeneous space. We use Graev metrics on free
groups for this.

The proof of Theorem 1.8 is based on the study of the Roelcke compactifications of groups of isometries. The
Roelcke compactifications of some topological groups of importance admit an explicit description and are equipped
with additional structures. For example, for the unitary group Us(H), where H is a Hilbert space and the subscript
s indicates the strong operator topology (= the topology inherited from the Tikhonov product HH ), the Roelcke
compactification can be identified with the unit ball Θ in the algebra of bounded linear operators on H [46]. The ball
Θ is equipped with the weak operator topology. This is the topology inherited from HH , where each factor H carries
the weak topology. Another case when the Roelcke compactification can be explicitly described is the following. Let
K be a zero-dimensional compact space such that all non-empty clopen subspaces of K are homeomorphic to K . For
example, K might be the Cantor set. Let G = Homeo(K), equipped with the compact-open topology. Then R(G) is
the set of all closed relations R on K (= closed subsets of K2) such that the domain and the range of R is equal to
K [49]. Yet another example of a topological group G for which R(G) is known is the group G = Homeo+[0,1] of
all orientation-preserving self-homeomorphisms of the closed interval I = [0,1]. In that case R(G) can be identified
with the closure of the set of graphs of elements of G in the space of closed subsets of the square I 2, see the picture
in [27, Example 2.5.4].

The proof of Theorem 1.8 leans on the study of the Roelcke compactification R(G) for G = Iso(M), where M is a
complete ω-homogeneous Urysohn metric space. In this case R(G) can be identified with the space of metric spaces
covered by two isometric copies of M , see Sections 6 and 7 below. Equivalently, Θ = R(G) can be identified with a
certain subset of IM×M that we now are going to specify.

A semigroup is a set with an associative binary operation. Let S be a semigroup with the multiplication (x, y) 
→ xy.
An element x ∈ S is an idempotent if x2 = x. We say that a self-map x 
→ x∗ of S is an involution if x∗∗ = x and
(xy)∗ = y∗x∗ for all x, y ∈ S. An element x ∈ S is symmetrical if x∗ = x, and a subset A ⊂ S is symmetrical if
A∗ = A. An ordered semigroup is a semigroup with a partial order � such that the conditions x � x′ and y � y′ imply
xy � x′y′.

Denote by I the closed unit interval [0,1]. Let 
 be the associative operation on I defined by x
y = min(x+y, 1).
Let X be a set, and let S = IX×X be the set of all functions f :X2 → I . We make S into an ordered semigroup with
an involution. Define an operation (f, g) 
→ f • g on S by

f • g(x, y) = inf
{
f (x, z) 
 g(z, y): z ∈ X

}
(x, y ∈ X).

This operation is associative, since for f,g,h ∈ S and x, y ∈ X both (f • g) • h(x, y) and f • (g • h)(x, y) are equal
to

inf
{
f (x, z) 
 g(z,u) 
 h(u, y): z,u ∈ X

}
.

Define an involution f 
→ f ∗ on S by f ∗(x, y) = f (y, x).
Let (M,d) be a complete ω-homogeneous Urysohn metric space, and let G = Iso(M). The Roelcke compacti-

fication Θ of G can be identified with a closed subsemigroup of IM×M and has a natural structure of an ordered
semigroup with an involution. Namely, Θ can be viewed as the set of all functions f ∈ IM×M which are bi-Katětov
in the sense of Definition 6.1. Such functions can be described in terms of the structure of an ordered semigroup with
an involution on IM×M : a function f ∈ IM×M is bi-Katětov if and only if

f • d = d • f = f, f ∗ • f � d, f • f ∗ � d.

The metric d is the unity of Θ , and the constant 1 is a zero element of Θ , in the sense that f • 1 = 1 • f = 1 for every
f ∈ Θ (in fact, for every f ∈ IM×M ).

Note that Θ is a compact space and a semigroup, but it might be misleading to call it a “compact semigroup”,
since the semigroup operation on Θ is not (even separately) continuous. However, both the topology and the algebraic
structure on Θ will play an important role in our proofs.
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The Roelcke compactification Θ of G = Iso(M) is used to prove Theorem 1.8 in the following way. Let f :G → G′
be a surjective morphism of topological groups. To prove that G is minimal and topologically simple, we must prove
that either f is a homeomorphism or |G′| = 1. Extend f to a map F :Θ → Θ ′, where Θ ′ is the Roelcke compactifi-
cation of G′. Let S = F−1(e′), where e′ is the unity of G′. Then S is a closed subsemigroup of Θ which is invariant
under inner automorphisms. To every closed subsemigroup of Θ an idempotent can be assigned in a canonical way.
Let p be the idempotent corresponding to S. Since S is invariant under inner automorphisms, so is p. We show
that certain idempotents in Θ are in a one-to-one correspondence with closed subsets of M (Proposition 6.4). Since
there are no non-trivial G-invariant closed subsets of M , it follows that p is trivial: it is either the unity of Θ or the
constant 1. Accordingly, either f is a homeomorphism or G′ = {e′}.

The same method was used in [46] and [49] to give alternative proofs of Stoyanov’s theorem that the unitary group
of a Hilbert space is totally minimal and of Gamarnik’s theorem that the group of homeomorphisms of the Cantor set
is minimal, see Remarks 2 and 3 in Section 9 below.

Under the conditions of Theorem 1.8, the group Iso(M) has the fixed point on compacta (f.p.c.) property. This
deep result is due to V. Pestov [29–32].3 A topological group G has the f.p.c. property, or is extremely amenable, if
every compact G-space has a G-fixed point. As pointed out by Pestov, his theorem, combined with Theorem 1.7 of
the present paper, implies that every topological group is a subgroup of an extremely amenable group.

We prove Theorem 1.7 in Section 5 and Theorem 1.8 in Section 8.
Another version of Question 1.1 is the following (see [2, Problem VI.6], [26, Problem 519]): is every topological

group a quotient of a minimal topological group? I have earlier announced that the answer is positive. Moreover,
I claimed that every topological group is a group retract of a minimal topological group. In other words, for every
topological group G there exist a minimal topological group G′ ⊇ G and a morphism r : G′ → G such that r2 = r (it
follows that G is a quotient of G′). My announcement appears as Theorem 3.3F.2 in [6]. However, my announcement
was premature, and my “proof” contained a gap. A complete proof has been recently found by M. Megrelishvili [22].

Megrelishvili’s construction shows that every Weil-complete group is a group retract of a Weil-complete minimal
group. This result, combined with the fact that every topological group is a quotient of a Weil-complete group [45],4

implies that every topological group is a quotient of a Weil-complete minimal group. Indeed, given any topological
group G, represent G as a quotient of a Weil-complete group G′, and then, using Megrelishvili’s theorem, represent
G′ as a group retract (and hence as a quotient) of a Weil-complete minimal group.

2. Invariant pseudometrics on groups

A pseudometric d on a group G is left-invariant if d(xy, xz) = d(y, z) for all x, y, z ∈ G. Right-invariant pseudo-
metrics are defined similarly. A pseudometric is two-sided invariant if it is left-invariant and right-invariant. Let e be
the unity of G. A non-negative real function p on G is a seminorm if it satisfies the following conditions: (1) p(e) = 0;
(2) p(xy) � p(x) + p(y) for all x, y ∈ G; (3) p(x−1) = p(x) for all x ∈ G. If p is a seminorm on G, define a left-
invariant pseudometric d by d(x, y) = p(x−1y). We thus get a one-to-one correspondence between seminorms and
left-invariant pseudometrics. Given a left-invariant pseudometric d , the corresponding seminorm p is defined by
p(x) = d(x, e). A seminorm p is invariant if it is invariant under inner automorphisms, that is p(yxy−1) = p(x) for
every x, y ∈ G. Invariant seminorms correspond to two-sided invariant pseudometrics.

Now let G be a topological group. Then the topology of G is determined by the collection of all continuous left-
invariant pseudometrics [15, Theorem 8.2]. Equivalently, for every neighbourhood U of unity there exists a continuous
seminorm p on G such that the set {x ∈ G: p(x) < 1} is contained in U .

Theorem 2.1. For every topological group G there exists a metric space M such that w(G) = w(M) and G is
isomorphic (as a topological group) to a subgroup of Iso(M).

This theorem has been rediscovered many times by various authors, see [48] and historical remarks in [27,28].

3 The setting considered in these papers and books is not exactly the same as in Theorem 1.8 (detailed proofs are given either for the separable
case or for unbounded metrics), but, as noted in [29], the same argument works for bounded metrics verbatim.

4 It was proved in [45] that the free topological group of any stratifiable space is Weil-complete. Since every topological space is the image of a
stratifiable space under a quotient (even open) map [19], it follows that every topological group is a quotient of a Weil-complete group.
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1st proof. There exists a family D = {dα: α ∈ A} of continuous left-invariant pseudometrics on G which determines
the topology of G and has the cardinality |A| = w(G). Replacing, if necessary, each d ∈ D by inf(d,1), we may
assume that all pseudometrics in D are bounded by 1. For every α ∈ A let Mα be the metric space associated with the
pseudometric space (G,dα), and let M = ⊕

α∈A Mα be the disjoint sum of the spaces Mα . There is an obvious metric
on M which extends the metric of each Mα : if two points of M are in distinct pieces Mα and Mβ , define the distance
between them to be 1. The left action of G on itself yields for every α ∈ A a natural continuous homomorphism
G → Iso(Mα). The homomorphism G → ∏

α∈A Iso(Mα) thus obtained is a homeomorphic embedding. It remains to
note that the group

∏
α∈A Iso(Mα) can be identified with a topological subgroup of Iso(M). �

2nd proof. Let B be the Banach space of all bounded real functions on G which are uniformly continuous with respect
to the right uniformity. The natural left action of G on B , defined by the formula gf (h) = f (g−1h) (g,h ∈ G, f ∈ B),
yields an isomorphic embedding of G into Iso(B). The weight of B may exceed the weight of G, but it is easy to
find a G-invariant subspace B ′ of B such that B ′ determines the topology of G and w(B ′) = w(G). Then the natural
homomorphism G → Iso(B ′) still is a homeomorphic embedding. �

Let us discuss invariant seminorms on free groups. For a set X we denote by S(X) the set of all words of the
form x

ε1
1 . . . x

εn
n , where n � 0, xi ∈ X and εi = ±1, 1 � i � n. In other words, S(X) is the free monoid5 on the set

X ∪ X−1, where X−1 is a disjoint copy of X. A word w ∈ S(X) is irreducible if it does not contain subwords of the
form xεx−ε . We consider the free group F(X) on a set X as the set of all irreducible words in S(X). Every word
w ∈ S(X) represents a uniquely defined element w′ ∈ F(X) which can be obtained from w by consecutive deletion
of subwords of the form xεx−ε . In this situation we say that the words w and w′ are equivalent. For u,v ∈ S(X) we
denote by u|v the product of u and v in the semigroup S(X), that is the word obtained by writing v after u (without
cancelations). If u and v are irreducible, we denote by uv their product in the group F(X), that is the irreducible word
equivalent to u|v.

Let (X,d) be a metric space. A real function f on X is non-expanding, or 1-Lipschitz, if |f (x) − f (y)| � d(x, y)

for every x, y ∈ X. Let k be a non-negative non-expanding function on X. We shall describe a two-sided invariant
pseudometric Gr(d, k) on the free group F(X) which is called the Graev pseudometric [13]. The corresponding
invariant seminorm p is characterized by the following property: p is the greatest invariant seminorm on F(X) such
that p(x) = k(x) and p(x−1y) � d(x, y) for every x, y ∈ X. We shall need later the following explicit construction of
the seminorm p.

It will be convenient to define the function p on the entire set S(X). Given a word w = x
ε1
1 . . . x

εn
n ∈ S(X), we

define a w-pairing to be a collection E of pairwise disjoint two-element subsets of the set J = {1, . . . , n} such that:
(1) if {a, b} ∈ E and {i, j} ∈ E, where a < b and i < j , then the intervals [a, b] and [i, j ] are either disjoint or one
of them is contained in the other (this means that the cases a < i < b < j and i < a < j < b are excluded); (2) if
{i, j} ∈ E, then εi = −εj . To put it less formally, some pairs of letters of the word w are connected by arcs, each letter
is connected with at most one other letter, each arc connects a pair of letters of the form x and y−1 (x, y ∈ X), and the
arcs do not intersect each other. Given a w-pairing E, define the Graev sum sE = sE(w) by

sE =
∑{

d(xi, xj ): {i, j} ∈ E, i < j
} +

∑{
k(xi): i ∈ J \ ∪E

}
,

and let p(w) be the minimum of the numbers sE , taken over the finite set of all w-pairings E.
We claim that p(w) = p(w′) if the words w,w′ ∈ S(X) are equivalent. It suffices to consider the case when

w = u|v and w′ = u|xεx−ε |v. We show that for every w′-pairing E′ there exists a w-pairing E such that sE � sE′ ,
and vice versa. In one direction this is obvious: given a w-pairing E, which we consider as a system of arcs connecting
the letters of the word w, add one more arc which connects the letters xε and x−ε of the word w′. We get a w′-pairing
E′ for which sE = sE′ . Conversely, let a w′-pairing E′ be given. We must construct a w-pairing E for which sE � sE′ .
As above, we consider E′ as a system of arcs. The word w is obtained from w′ by deleting the subword xεx−ε . To
get E, we replace the arcs which go from the letters xε and x−ε and leave the other arcs unchanged. Consider the
following cases.

5 A monoid is a semigroup with a neutral element. We require that monoid morphisms should preserve the neutral element.
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Case 1. There is an arc in E′ connecting the letters xε and x−ε . Then just delete this arc to get E. We have sE = sE′ .

Case 2. The letters xε and x−ε are connected in E′, but not with each other. Let xε be connected with y−ε and x−ε

be connected with zε . Replace these two connections by one connection between y−ε and zε . The sums sE and sE′
differ by the terms d(y, z) and d(y, x) + d(x, z), hence the triangle inequality implies that sE � sE′ .

Case 3. One of the letters xε and x−ε , say xε , is connected in E′ and the other is unpaired. Let xε be connected
with y−ε . Delete this connection and leave the letter y−ε unpaired in E. The sums sE and sE′ differ by the terms k(y)

and d(x, y) + k(x). Since the function k is non-expanding, we have k(y) � d(x, y) + k(x) and hence sE � sE′ .

Case 4. Both xε and x−ε are unpaired in E′. Then all arcs are left without change. The sum sE is obtained from sE′
by omitting the non-negative term 2k(x), hence sE � sE′ .

We have thus proved the claim that p(w) = p(w′) for equivalent words w,w′ ∈ S(X). It follows that the restriction
of p to F(X) is indeed a seminorm: if u,v ∈ F(X), then p(uv) = p(u|v) � p(u) + p(v). It is easy to see that
p(u) = p(u−1) for every u ∈ F(X). We show that p is invariant under inner automorphisms. If u ∈ S(X), x ∈ X,
ε = ±1 and w = xε |u|x−ε , then p(w) � p(u), since every u-pairing can be extended in an obvious way to a w-
pairing with the same Graev sum. It follows that for every u,v ∈ F(X) we have p(uvu−1) = p(u|v|u−1) � p(v), and
by symmetry of the relation of being conjugate in F(X) also the opposite inequality holds. Thus p(uvu−1) = p(v),
which means that the seminorm p is invariant.

Let Y be a pseudometric space, and let Iso(Y ) be the group of all distance-preserving permutations of Y , equipped
with the topology of pointwise convergence. Then Iso(Y ) is a topological group, not necessarily Hausdorff. For later
use we note here the following:

Lemma 2.2. Let (X,d) be a metric space, and let k be a non-expanding function on X. Let D = Gr(d, k) be the
Graev pseudometric on the free group G = F(X). Let H1 ⊂ Iso(X) be the topological group of all isometries of
X which preserve the function k, and let H2 ⊂ Iso(G) be the topological group (not necessarily Hausdorff ) of all
automorphisms of G which preserve the pseudometric D. Then the natural homomorphism ϕ 
→ ϕ∗ from H1 to H2 is
continuous.

Proof. It suffices to show that for every w ∈ G the map ϕ 
→ ϕ∗(w) from H1 to (G,D) is continuous at the unity.
If w = x

ε1
1 . . . x

εn
n , then ϕ∗(w) = ϕ(x1)

ε1 . . . ϕ(xn)
εn , and we have D(ϕ∗(w),w) �

∑n
i=1 d(ϕ(xi), xi). Let ε > 0 be

given. If ϕ ∈ H1 is close enough to the unity, then d(ϕ(xi), xi) < ε/n, 1 � i � n, and therefore D(ϕ∗(w),w) < ε. �
3. Katětov’s construction of Urysohn extensions

Definition 3.1. Let M be a subspace of a metric space L. We say that M is g-embedded in L if there exists a continuous
homomorphism e : Iso(M) → Iso(L) such that for every ϕ ∈ Iso(M) the isometry e(ϕ) :L → L is an extension of ϕ.

Let M be a g-embedded subspace of a metric space L. A homomorphism e : Iso(M) → Iso(L) satisfying the
condition of Definition 3.1 is a homeomorphic embedding, since the inverse map e(ϕ) 
→ ϕ = e(ϕ)|M is continuous.
It follows that Iso(M) is isomorphic to a topological subgroup of Iso(L).

In this section we prove the following theorem:

Theorem 3.2. Let M be a metric space of diameter � 1. There exists a complete Urysohn metric space L containing
M as a subspace such that w(L) = w(M) and M is g-embedded in L.

It follows that for every topological group G there exists a complete Urysohn metric space M of the same weight
as G such that G is isomorphic to a subgroup of Iso(M). This is weaker than Theorem 1.7, since in the non-separable
case the metric space M need not be ω-homogeneous. In the next section we shall prove that every metric space M

can be g-embedded into an ω-homogeneous metric space L. Using this fact, we show that the Urysohn space L in
Theorem 3.2 can be additionally assumed ω-homogeneous (Theorem 5.1). This yields Theorem 1.7, see Section 5.
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The arguments of [47,50] show that Theorem 3.2 essentially follows from Katětov’s construction of Urysohn
extensions [20]. For the reader’s convenience we give a detailed proof.

Let (X,d) be a metric space of diameter � 1. We say that a function f :X → [0,1] is Katětov if |f (x) − f (y)| �
d(x, y) � f (x)+f (y) for all x, y ∈ X. A function f is Katětov if and only if there exists a metric space X′ = X∪{p}
of diameter � 1 containing X as a subspace such that for every x ∈ X f (x) is equal to the distance between x

and p. Let E(X) be the set of all Katětov functions on X, equipped with the sup-metric dE
X defined by dE

X(f,g) =
sup{|f (x) − g(x)|: x ∈ X}. If Y is a non-empty subset of X and f ∈ E(Y), define g = κY (f ) ∈ E(X) by

g(x) = inf
({

d(x, y) + f (y): y ∈ Y
} ∪ {1}) = inf

{
d(x, y) 
 f (y): y ∈ Y

}
for every x ∈ X. It is easy to check that g is indeed a Katětov function on X and that g extends f ; one can define g as
the largest 1-Lipschitz function X → [0,1] that extends f . The map κY :E(Y) → E(X) is an isometric embedding.
Let

E(X,ω) =
⋃{

κY

(
E(Y)

)
: Y ⊂ X, Y is finite and non-empty

} ⊂ E(X).

For every x ∈ X let hx ∈ E(X) be the function on X defined by hx(y) = d(x, y). Note that hx = κ{x}(0) and hence
hx ∈ E(X,ω). The map x 
→ hx is an isometric embedding of X into E(X,ω). Thus we can identify X with a
subspace of E(X,ω).

Lemma 3.3. If x ∈ X and f ∈ E(X), then dE
X(f,hx) = f (x).

Proof. Since f is a Katětov function, for every y ∈ Y we have f (y) − d(x, y) � f (x) and d(x, y) − f (y) � f (x).
Hence dE

X(f,hx) = sup{|f (y) − d(x, y)|: y ∈ X} � f (x), and at y = x the equality is attained. �
Lemma 3.4. Let Z = Y ∪ {p} be a finite metric space of diameter � 1. Every isometric embedding j :Y → X extends
to an isometric embedding of Z into E(X,ω).

Proof. We may assume that Y is a subspace of X and that j (y) = y for every y ∈ Y . Let f ∈ E(Y) be the Katětov
function defined by f (y) = ν(y,p) for every y ∈ Y , where ν is the metric on Z. Let g = κY (f ) ∈ E(X,ω). We claim
that the extension of j over Z which maps p to g is an isometric embedding. It suffices to check that dE

X(hy, g) =
ν(y,p) for every y ∈ Y . Fix y ∈ Y . Let h∗

y ∈ E(Y) be the restriction of hy to Y . According to Lemma 3.3 we have

dE
Y (h∗

y, f ) = f (y). Since hy = κY (h∗
y), g = κY (f ) and the map κY :E(Y) → E(X) is distance-preserving, it follows

that dE
X(hy, g) = dE

Y (h∗
y, f ) = f (y) = ν(y,p), as claimed. �

Lemma 3.5. Any metric space X of diameter � 1 is g-embedded in E(X,ω).

Proof. It is clear that every isometry ϕ :Y → Z between any two metric spaces can be extended to an isometry
ϕ∗ :E(Y,ω) → E(Z,ω). Such an extension is unique, since every point in E(Y,ω) (or, more generally, in E(Y))
is uniquely determined by its distances from the points of Y (Lemma 3.3), and similarly for Z. In particular, every
isometry ϕ ∈ Iso(X) uniquely extends to an isometry ϕ∗ ∈ Iso(E(X,ω)). The map ϕ 
→ ϕ∗ is a homomorphism of
groups. We show that this homomorphism is continuous. Fix f ∈ E(X,ω) and ε > 0. Pick a finite subset Y of X and
g ∈ E(Y) so that f = κY (g). Let U be the set of all ϕ ∈ Iso(X) such that d(ϕ(y), y) < ε for every y ∈ Y . Then U

is a neighbourhood of unity in Iso(X). It suffices to show that dE
X(ϕ∗(f ), f ) < ε for every ϕ ∈ U . Fix ϕ ∈ U . Let

gϕ = g ◦ ϕ−1 ∈ E(ϕ(Y )). Then ϕ∗(f ) = κϕ(Y )(gϕ). Thus for every x ∈ X we have

ϕ∗(f )(x) = inf
{
d(x, z) 
 gϕ(z): z ∈ ϕ(Y )

} = inf
{
d
(
x,ϕ(y)

) 
 g(y): y ∈ Y
}
.

Since

f (x) = inf
{
d(x, y) 
 g(y): y ∈ Y

}
,

it follows that∣∣ϕ∗(f )(x) − f (x)
∣∣ � sup

{∣∣d(
x,ϕ(y)

) − d(x, y)
∣∣: y ∈ Y

}
� max

{
d
(
y,ϕ(y)

)
: y ∈ Y

}
< ε,

whence dE(ϕ∗(f ), f ) < ε. �
X
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Let α be an ordinal, and let M = {Mβ : β < α} be a family of metric spaces such that Mβ is a subspace of Mγ for
all β < γ < α. We say that the family M is continuous if Mβ = ⋃

γ<β Mγ for every limit ordinal β < α, β > 0.

Proposition 3.6. Let {Mβ : β � α} be an increasing continuous chain of metric spaces. If Mβ is g-embedded in Mβ+1
for every β < α, then M0 is g-embedded in Mα .

Proof. For every β < α pick a continuous homomorphism eβ : Iso(Mβ) → Iso(Mβ+1) such that eβ(ϕ) extends ϕ for
every ϕ ∈ Iso(Mβ). By transfinite recursion on β � α define a homomorphism Λβ : Iso(M0) → Iso(Mβ) such that
Λβ(ϕ) extends Λγ (ϕ) for every ϕ ∈ Iso(M0) and γ < β � α. Let Λ0 be the identity map of Iso(M0). If β = γ +1, put
Λβ = eγ Λγ . If β is a limit ordinal, let Λβ(ϕ) be the isometry of Mβ such that for every γ < β its restriction to Mγ is
equal to Λγ (ϕ). We prove by induction on β that each homomorphism Λβ is continuous. This is obvious for non-limit
ordinals. Assume that β is limit. To prove that Λβ : Iso(M0) → Iso(Mβ) is continuous, it suffices to show that for every
x ∈ Mβ the map ϕ 
→ Λβ(ϕ)(x) from Iso(M0) to Mβ is continuous. Fix x ∈ Mβ . Pick γ < β so that x ∈ Mγ . Then
Λβ(ϕ)(x) = Λγ (ϕ)(x) for every ϕ ∈ Iso(M0). The map Λγ is continuous by the assumption of induction, hence the
map ϕ 
→ Λβ(ϕ)(x) = Λγ (ϕ)(x) also is continuous. Thus Λα : Iso(M0) → Iso(Mα) is a continuous homomorphism
such that Λα(ϕ) extends ϕ for every ϕ ∈ Iso(M0). This means that M0 is g-embedded in Mα . �

Put X0 = X, Xn+1 = E(Xn,ω). We consider each Xn as a subspace of Xn+1, so we get an increasing sequence
X0 ⊂ X1 ⊂ · · · of metric spaces. Let Xω = ⋃{Xn: n ∈ ω}.

Proposition 3.7. The space Xω is Urysohn, and X is g-embedded in Xω.

Proof. Let Z = Y ∪ {p} be a finite metric space of diameter � 1, and let j :Y → Xω be an isometric embedding.
Pick n ∈ ω so that j (Y ) ⊂ Xn. In virtue of Lemma 3.4, there exists an isometric embedding of Z into Xn+1 ⊂ Xω

which extends j . This means that Xω is Urysohn. The second assertion of the proposition follows from Lemma 3.5
and Proposition 3.6. �
Proposition 3.8. (See [20].) The weight of Xω is equal to the weight of X.

Proof. It suffices to show that for every metric space X the weight of E(X,ω) is equal to the weight of X. Let
w(X) = τ , and let A be a dense subset of X of cardinality τ . Let γ = {κY (E(Y )): Y ⊂ A, Y is finite}. Then γ is a
family of separable subspaces of E(X,ω), |γ | = τ and

⋃
γ is dense in E(X,ω) (see the proof of Lemma 1.8 in [20]).

Hence E(X,ω) has a dense subspace of cardinality τ . �
Proposition 3.9. Every metric space is g-embedded in its completion.

Proof. Let M be a metric space, M be its completion. Every isometry ϕ ∈ Iso(M) uniquely extends to an isometry
ϕ∗ ∈ Iso(M). We show that the homomorphism ϕ 
→ ϕ∗ is continuous. Let d be the metric on M . Fix x ∈ M and
ε > 0. Pick y ∈ M so that d(x, y) < ε. Let U = {ϕ ∈ Iso(M): d(ϕ(y), y) < ε}. Then U is a neighbourhood of unity
in Iso(M). If ϕ ∈ U , then d(ϕ∗(x), x) � d(ϕ∗(x),ϕ∗(y)) + d(ϕ∗(y), y) + d(y, x) < 3ε. This implies the continuity
of the homomorphism ϕ 
→ ϕ∗. �
Proposition 3.10. (See [52], [31, Lemma 3.4.10], [32, Lemma 5.1.17], [14, Section 3.11 2

3 +].) The completion of any
Urysohn metric space is Urysohn.

Proof. Let (M,d) be a complete metric space containing a dense Urysohn subspace A. We must prove that M is
Urysohn.

Let Y be a finite subset of M , and let f ∈ E(Y) be a Katětov function. It suffices to prove that there exists z ∈ M

such that d(y, z) = f (y) for every y ∈ Y . Pick a sequence {an: n ∈ ω} ⊂ A such that:

if An = {ak: k � n} and rn = d(an+1,An), n = 0,1, . . . , then the series
∑

rn converges;
every y ∈ Y is a cluster point of the sequence {an: n ∈ ω}.
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To construct such a sequence, enumerate Y as Y = {y1, . . . , ys}, and for every k and j (k ∈ ω, 1 � j � s) pick a point
x

j
k ∈ A such that d(x

j
k , yj ) < 2−k . Then d(x

j

k+1, x
j
k ) < 21−k for every k and j , and the sequence

x1
0 , x2

0 , . . . , xs
0, x

1
1 , . . . , xs

1, x
1
2 , . . .

has the required properties.
Let g = κY (f ) ∈ E(M). We construct by induction a sequence {zn: n ∈ ω} of points of A such that:

(1) if k � n, then d(zn, ak) = g(ak);
(2) d(zn+1, zn) � 2rn for every n ∈ ω.

Pick z0 ∈ A so that d(z0, a0) = g(a0). This is possible since A is Urysohn. Suppose that the points z0, . . . , zn have
been constructed so that the conditions 1 and 2 are satisfied. Consider two Katětov functions fn and gn on the set
An+1 = {ak: k � n + 1}: let fn(x) = d(zn, x) for every x ∈ An+1, and let gn = g|An+1 . By (1), the functions fn and
gn coincide on An, hence the distance between them in the space E(An+1) is equal to

∣∣fn(an+1) − gn(an+1)
∣∣ = sup

{∣∣fn(an+1) − fn(x) − gn(an+1) + gn(x)
∣∣: x ∈ An

}
� sup

{∣∣fn(an+1) − fn(x)
∣∣: x ∈ An

} + sup
{∣∣gn(an+1) − gn(x)

∣∣: x ∈ An

}
� 2d(an+1,An) = 2rn.

Let Xn be the metric space An+1 ∪ {fn}, considered as a subspace of E(An+1). In virtue of Lemma 3.3, the map of
Xn to A which leaves each point of An+1 fixed and sends fn to zn is an isometric embedding. Since A is Urysohn, this
map can be extended to an isometric embedding of Xn ∪ {gn} to A. Let zn+1 be the image of gn. Then d(zn+1, zn) =
dE
An+1

(gn, fn) � 2rn. In virtue of Lemma 3.3, for every k � n + 1 we have d(zn+1, ak) = gn(ak) = g(ak). Thus the
conditions 1 and 2 are satisfied, and the construction is complete.

Since the series
∑

rn converges, it follows from (2) that the sequence {zn: n ∈ ω} is Cauchy and hence has a limit
in the complete space M . Let z = lim zn. By (1), we have d(z, ak) = g(ak) for every k ∈ ω. Since Y is contained in
the closure of the set {an: n ∈ ω}, it follows that d(z, y) = g(y) = f (y) for every y ∈ Y . �
Proof of Theorem 3.2. Let M be a metric space of diameter � 1, and let Mω be the Urysohn extension of M con-
structed above. Consider the completion L of Mω. Proposition 3.10 implies that L is Urysohn. Proposition 3.8 shows
that w(L) = w(M). Finally, M is g-embedded in Mω (Proposition 3.7) and Mω is g-embedded in L (Proposition 3.9),
so M is g-embedded in L. Thus L has the properties required by Theorem 3.2. �
4. Graev metrics and ω-homogeneous extensions

In this section we prove the following:

Theorem 4.1. Every metric space can be g-embedded into an ω-homogeneous metric space of the same weight and
the same diameter.

The proof is based on the construction of Graev metrics described in Section 2. We apply this construction to metric
spaces of relations. A relation on a set X is a subset of X2. If R and S are relations on X, then the composition R ◦ S

(or simply RS) is defined by R ◦ S = {(x, y): ∃z((x, z) ∈ S and (z, y) ∈ R)}. The inverse relation R−1 is defined by
R−1 = {(x, y): (y, x) ∈ R}. The set of all relations on a set X is a semigroup with an involution: the multiplication
is given by the composition, and the involution is given by the map R 
→ R−1. The unity of this semigroup is the
diagonal Δ of X2.

We use the notation of Section 2. In particular, if k is a non-expanding function � 0 on a metric space (X,d),
then Gr(d, k) is the Graev pseudometric on the free group F(X). We consider the group F(X) as a subset of the free
monoid S(X) on the set X ∪ X−1.

Proof of Theorem 4.1. Let (M,d) be a metric space. We first construct a g-embedding of M into a metric space M∗
such that w(M∗) = w(M) and every isometry between finite subsets of M extends to an isometry of M∗.
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For every isometry f :A → B between finite non-empty subsets of M consider the graph R = {(a, f (a)): a ∈ A}
of f , and let Γ be the set of all such graphs. Thus a non-empty finite subset R ⊂ M2 is an element of Γ iff
for any two pairs (x1, y1), (x2, y2) ∈ R we have d(x1, x2) = d(y1, y2). Equip M2 with the metric d2 defined by
d2((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2), and let dH be the corresponding Hausdorff metric on the set of finite
subsets of M2. If R and S are two non-empty finite subsets of M2 and a � 0, then dH (R,S) � a iff for every p ∈ R

there exists q ∈ S such that d2(p, q) � a, and for every p ∈ S there exists q ∈ R such that d2(p, q) � a.
Let k be the non-expanding function on (Γ, dH ) defined by k(R) = max{d(x, y): (x, y) ∈ R}. Let G be the free

group on Γ , equipped with the Graev pseudometric D = Gr(dH , k). To avoid confusion of multiplication in G with
composition of relations, we assign to each R ∈ Γ a symbol tR , and consider elements of G as irreducible words of
the form x

ε1
1 . . . x

εn
n , where xi = tRi

. Similarly, we consider elements of the semigroup S(Γ ) as words of the same
form. Let Δ = {(x, x): x ∈ M} be the diagonal of M2. The set Γ ′ = Γ ∪ {∅} ∪ {Δ} is a symmetrical subsemigroup of
the semigroup of all relations on M . Let Φ: G → Γ ′ be the map defined by the following rule: if w = t

ε1
R1

. . . t
εn

Rn
∈ G

is a non-empty irreducible word, then Φ(w) = R
ε1
1 ◦ · · · ◦ R

εn
n . If a, b ∈ M , then (a, b) ∈ Φ(w) iff there exists a chain

c0 = b, c1, . . . , cn = a of points of M such that for every i = 1, . . . , n we have either εi = 1 and (ci, ci−1) ∈ Ri or
εi = −1 and (ci−1, ci) ∈ Ri . For the empty word eG ∈ G we put Φ(eG) = Δ.

Note that the definition of Φ(w) makes sense also without the assumption that the word w be irreducible, so we
can assume that Φ is defined on the set S(Γ ) of all words of the form t

ε1
R1

. . . t
εn

Rn
. Recall that w1|w2 denotes the word

obtained by writing w2 after w1 (without cancelations). We have Φ(w1|w2) = Φ(w1) ◦ Φ(w2).

Lemma 4.2. If w ∈ S(Γ ) and u is the irreducible word equivalent to w, then Φ(u) ⊃ Φ(w).

Proof. It suffices to prove that Φ(w′) ⊃ Φ(w) if w′ is obtained from w by canceling one pair of letters. Let w =
u|tεRt−ε

R |v and w′ = u|v. Since Rε is a functional relation, we have Rε ◦R−ε ⊂ Δ and hence Φ(w′) = Φ(u) ◦Φ(v) =
Φ(u) ◦ Δ ◦ Φ(v) ⊃ Φ(u) ◦ Rε ◦ R−ε ◦ Φ(v) = Φ(w). �

For every w ∈ G we have Φ(w−1) = Φ(w)−1. We claim that Φ(w1w2) ⊃ Φ(w1) ◦ Φ(w2) for every w1,w2 ∈ G.
Indeed, the product w1w2 ∈ G is the irreducible word equivalent to w1|w2, therefore Φ(w1w2) ⊃ Φ(w1|w2) =
Φ(w1) ◦ Φ(w2) by Lemma 4.2.

For every a, b ∈ M let Ha,b ⊂ G be the set of all w ∈ G such that (a, b) ∈ Φ(w). We claim that H−1
a,b = Hb,a and

Hb,cHa,b ⊂ Ha,c for every a, b, c ∈ M . This follows from the properties of Φ established in the preceding paragraph.
Indeed, pick w1 ∈ Hb,c and w2 ∈ Ha,b . Then (a, b) ∈ Φ(w2) and (b, c) ∈ Φ(w1), hence (a, c) ∈ Φ(w1) ◦ Φ(w2) ⊂
Φ(w1w2) and w1w2 ∈ Ha,c . This proves the inclusion Hb,cHa,b ⊂ Ha,c . The equality H−1

a,b = Hb,a is proved similarly.
Note that tR ∈ Ha,b if and only if (a, b) ∈ R, since Φ(tR) = R. Note also that eG ∈ Ha,b if and only if a = b, since

Φ(eG) = Δ.
Consider the following equivalence relation ∼ on G×M : a pair (g, a) is equivalent to a pair (h, b) iff h−1g ∈ Ha,b .

Since eG ∈ Ha,a , H−1
a,b = Hb,a and Hb,cHa,b ⊂ Ha,c for all a, b, c ∈ M , the relation ∼ is reflexive, symmetric and

transitive and thus is indeed an equivalence relation. Let L be the quotient set G×M/∼. The group G acts on G×M

by the rule g · (h, a) = (gh, a). The relation ∼ is invariant under this action, so there is a uniquely defined left action
of G on L which makes the canonical map G × M → L into a morphism of G-sets. Let i :M → L be the map which
sends each point a ∈ M to the class of the pair (1, a). If a �= b, then the pairs (1, a) and (1, b) are not equivalent, since
eG /∈ Ha,b . The map i is therefore injective, and we can consider M as a subspace of L, identifying M with i(M).
Every x ∈ L can be written in the form x = g · a (or simply x = ga), where g ∈ G and a ∈ M .

Let a, b ∈ M . The set of all g ∈ G such that ga = b is equal to Ha,b . If R ∈ Γ is a relation containing the pair (a, b),
then tR ∈ Ha,b and hence tRa = b. It follows that the action of G on L is transitive. Moreover, for every isometry
f : A → B between finite subsets of M there exists g ∈ G such that the self-map x → gx of L extends f . Indeed,
if R ∈ Γ is the graph of f , then tR ∈ Ha,f (a) and hence tRa = f (a) for every a ∈ A. Thus g = tR has the required
property.

We now define a G-invariant pseudometric ν on L which extends the metric d on M . Let p be the Graev seminorm
on G corresponding to the pseudometric D = Gr(dH , k). We have p(w) = D(w,eG) for every w ∈ G. For every
x, y ∈ L let

ν(x, y) = inf
{
p(g): g ∈ G, gx = y

}
.
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Then ν is a pseudometric on L. Since the seminorm p is invariant under inner automorphisms, the pseudometric ν is
G-invariant. Indeed, for x, y ∈ L and h ∈ G we have ν(hx,hy) = inf{p(g): ghx = hy} = inf{p(h−1gh): h−1ghx =
y} = inf{p(g′): g′x = y} = ν(x, y). We claim that ν extends the metric d on M : d(a, b) = ν(a, b) for every a, b ∈ M .
Since for w ∈ G the condition wa = b is equivalent to w ∈ Ha,b , we have ν(a, b) = inf{p(w): w ∈ Ha,b}. If R =
{(a, b)}, then tR ∈ Ha,b and p(tR) = k(R) = d(a, b). It follows that ν(a, b) � d(a, b). It remains to prove the opposite
inequality, which is equivalent to the following assertion:

Lemma 4.3. If a, b ∈ M and w ∈ Ha,b , then p(w) � d(a, b).

Proof. Let w = t
ε1
R1

. . . t
εn

Rn
. We argue by induction on n, the length of w. If n = 0, then w = eG, and we noted that

eG ∈ Ha,b implies a = b. If n = 1, then w = tεR and p(w) = k(R). Since w ∈ Ha,b , the relation R contains either
(a, b) or (b, a) and hence p(w) = k(R) � d(a, b). Assume that n > 1. It suffices to show that there exists u ∈ Ha,b of
length < n such that p(u) � p(w).

We use the construction of the Graev seminorm p described in Section 2. Let E be a w-pairing for which p(w)

is attained. In other words, E is a disjoint system of two-element subsets of the set J = {1, . . . , n} such that for the
Graev sum

sE =
∑{

dH (Ri,Rj ): {i, j} ∈ E, i < j
} +

∑{
k(Ri): i ∈ J \ ∪E

}

we have p(w) = sE . Considering the pair (i, j) ∈ E with the least possible value of |i − j | (“the shortest arc”), we
see that at least one of the following three cases must occur:

(1) there exists an i such that {i, i + 1} ∈ E;
(2) there exists an i such that {i, i + 2} ∈ E and i + 1 ∈ J \ ⋃

E;
(3) there exists an i such that i, i + 1 ∈ J \ ⋃

E.

In cases (1) or (3) we replace the subword t
εi

Ri
t
εi+1
Ri+1

of w by the letter tS , where S = R
εi

i ◦ R
εi+1
i+1 . In case (2) we replace

the subword t
εi

Ri
t
εi+1
Ri+1

t
εi+2
Ri+2

of w by the letter tS , where S = R
εi

i ◦ R
εi+1
i+1 ◦ R

εi+2
i+2 . In all cases we get a word w′ of length

< n. To justify the usage of the symbol tS , we must show that S ∈ Γ , which reduces to the fact that S �= ∅. Had S

been empty, the same would have been true for Φ(w) = R
ε1
1 ◦ · · · ◦ R

εn
n . On the other hand, since w ∈ Ha,b , we have

(a, b) ∈ Φ(w) �= ∅.
Let u ∈ G be the irreducible word equivalent to w′. The length of u is less than n. We show that u ∈ Ha,b and

p(u) � p(w).
By Lemma 4.2 we have Φ(w′) ⊂ Φ(u). Plainly Φ(w) = R

ε1
1 ◦ · · · ◦ R

εn
n = Φ(w′). Since w ∈ Ha,b , we have

(a, b) ∈ Φ(w). Thus (a, b) ∈ Φ(w) = Φ(w′) ⊂ Φ(u) and u ∈ Ha,b , as required.
We prove that p(u) � p(w). As in Section 2, we define p(w′) even if the word w′ is reducible, and we have

p(u) = p(w′) = inf sE′ , where E′ runs over the set of all w′-pairings. The w-pairing E in an obvious way yields a
w′-pairing E′, which coincides with E outside the changed part of w and leaves the new letter tS unpaired. The Graev
sums sE and sE′ differ only by the term k(S) in the sum sE′ and the terms dH (Ri,Ri+1) (case 1) or dH (Ri,Ri+2) +
k(Ri+1) (case 2) or k(Ri) + k(Ri+1) (case 3) in the sum sE . According to Lemma 4.4 below, we have sE′ � sE . Thus
p(u) = p(w′) � sE′ � sE = p(w). �
Lemma 4.4. Let ε, δ ∈ {−1,1},

(1) if R1,R2 ∈ Γ and S = Rε
1R−ε

2 is non-empty, then k(S) � dH (R1,R2);
(2) if R1,R2,R3 ∈ Γ and S = Rε

1Rδ
2R

−ε
3 is non-empty, then k(S) � dH (R1,R3) + k(R2);

(3) if R1,R2 ∈ Γ and S = Rε
1Rδ

2 is non-empty, then k(S) � k(R1) + k(R2).

Proof. Since k(R) = k(R−1) and dH (R,T ) = dH (R−1, T −1) for every R,T ∈ Γ , we may assume that ε = δ = 1.
Pick (a, b) ∈ S so that k(S) = d(a, b). Case (1) follows from (2) (take for R2 in (2) a sufficiently large finite part
of Δ), so let us consider case (2). There exist x, y ∈ M such that (a, x) ∈ R−1

3 , (x, y) ∈ R2 and (y, b) ∈ R1. Since
(x, a) ∈ R3, there exists a pair (u, v) ∈ R1 such that d(a, v)+d(u, x) � dH (R1,R3). The relation R1, being an element
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of Γ , is the graph of a partial isometry, so from (y, b) ∈ R1 and (u, v) ∈ R1 it follows that d(v, b) = d(u, y). Note
that d(x, y) � k(R2). Thus we have k(S) = d(a, b) � d(a, v) + d(v, b) = d(a, v) + d(u, y) � d(a, v) + d(u, x) +
d(x, y) � dH (R1,R3) + k(R2), as required. Case (3) is easy: there exists a point c ∈ M such that (a, c) ∈ R2 and
(c, b) ∈ R1, hence k(S) = d(a, b) � d(a, c) + d(c, b) � k(R2) + k(R1). �

We have thus proved that the pseudometric ν on L extends the metric d on M . Let (M∗, d∗) be the metric space
associated with the pseudometric space (L, ν). The metric space (M,d) can be naturally identified with a subspace
of (M∗, d∗). We show that M is g-embedded in M∗.

In virtue of the functorial nature of the construction of M∗, every isometry ϕ of M naturally extends to an isometry
ϕ∗ of M∗. The map ϕ 
→ ϕ∗ from Iso(M) to Iso(M∗) is a homomorphism of groups. We claim that this homo-
morphism is continuous. This follows from the fact that at each step of our construction new spaces are obtained
from the old ones via functors “with finite support”: every element of Γ is a finite relation on M , and every word
w ∈ G involves only finitely many elements of Γ . Given an isometry ϕ ∈ Iso(M), the isometry ϕ∗ ∈ Iso(M∗) can
be obtained step by step in the following way. First we consider the isometry ϕ1 of the metric space (Γ, dH ) corre-
sponding to ϕ; the isometry ϕ1 preserves the function k on Γ and gives rise to the automorphism ϕ2 of the group
G = F(Γ ) which preserves the Graev pseudometric D; then we get the isometry ϕ3 of L which maps the class of
each pair (g, x) (g ∈ G, x ∈ M) to the class of the pair (ϕ2(g),ϕ(x)); finally we get the isometry ϕ4 = ϕ∗ of M∗.
We show step by step that ϕi depends continuously on ϕ. For i = 1 this is straightforward: use the fact that Γ con-
sists of finite subsets of M2. For i = 2 apply Lemma 2.2 with X = Γ . Let us consider the case i = 3. Pick a point
x = ga ∈ L (g ∈ G, a ∈ M). It suffices to check that ν(ϕ3(x), x) is small if ϕ is close to the identity. We have
ν(ϕ3(x), x) = ν(ϕ2(g)ϕ(a), ga) � ν(ϕ2(g)ϕ(a), gϕ(a)) + ν(gϕ(a), ga) = ν(g−1ϕ2(g)ϕ(a),ϕ(a)) + ν(ϕ(a), a). By
the definition of ν, the first term of the last sum does not exceed p(g−1ϕ2(g)) = D(ϕ2(g), g) and hence is arbitrarily
small if ϕ is close enough to the identity. The same is true for second term, and we are done. Finally, ϕ4 is the image
of ϕ3 under the natural morphism Iso(L) → Iso(M∗), and the case i = 4 follows.

We have thus proved that M is g-embedded in M∗. We saw that each isometry between finite subsets of M extends
to an isometry of L and hence also to an isometry of M∗. It is easy to see that w(M∗) = w(M). If the diameter C of
M is finite, replace the metric d∗ of M∗ by inf(d∗,C). This operation can make the group Iso(M∗) only larger, and
the diameter of M∗ becomes equal to that of M .

To finish the proof of Theorem 4.1, iterate the construction of M∗. We get an increasing chain M0 = M ⊂ M1 =
M∗ ⊂ M2 = M∗

1 ⊂ · · · of metric spaces such that each Mn is g-embedded in Mn+1, every isometry between finite
subsets of Mn extends to an isometry of Mn+1, w(Mn) = w(M) and diamMn = diamM , n = 0,1, . . . . Consider the
space Mω = ⋃

n∈ω Mn. We have w(Mω) = w(M) and diamMω = diamM . In virtue of Proposition 3.6, each Mn is g-
embedded in Mω. Since every finite subset of Mω is contained in some Mn, it is clear that Mω is ω-homogeneous. �
Remarks.

1. If a, b ∈ M are distinct and S = {(b, b)}, the pairs (1, a) and (tS, a) represent distinct points of L that have the
same image in M∗. Early versions of this paper contained the false statement that ν itself is a metric and M∗ = L.
I am indebted to the referee for catching this error.

2. The referee raised the question whether the methods of this section could be used to prove the following result
by S. Solecki [40] and A.M. Vershik [56] that extends an earlier result by Hrushovski: for every finite metric
space A there exists another finite metric space A∗ containing A such that all partial isometries6 of A extend
to isometries of A∗. I do not know the answer. A partial answer is provided by Pestov’s paper [34] where the
Hrushovski–Solecki–Vershik theorem is proved with the aid of pseudometrics on groups, and the notion of a
residually finite group is used to construct isometric embeddings of finite metric spaces into finite metric groups.
A similar technique was used in [33].

5. Proof of Theorem 1.7

In this section we prove Theorem 1.7.

6 A partial isometry of A is an isometry between two subsets of A.
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Theorem 5.1. Let M be a metric space of diameter � 1. There exists a complete ω-homogeneous Urysohn metric
space L containing M as a subspace such that w(L) = w(M) and M is g-embedded in L.

Proof. Consider two cases.

Case 1. M is separable. According to Theorem 3.2, there exists a complete separable Urysohn space L such that M

is a g-embedded subspace of L. According to Proposition 1.6, L = U1 is ω-homogeneous.

Case 2. M is not separable. Let τ = w(M). Applying in turn Theorems 3.2 and 4.1, construct an increasing con-
tinuous chain {Mα: α � ω1} of metric spaces of weight τ and diameter � 1 such that M0 = M , each Mα is
g-embedded in Mα+1 (α < ω1), and Mα+1 is complete Urysohn for α even and ω-homogeneous for α odd. Let
L = Mω1 = ⋃

α<ω1
Mα . Proposition 3.6 implies that each Mα is g-embedded in L. The space L is Urysohn, being the

union of the increasing chain {M2α+1: α < ω1} of Urysohn spaces. For similar reasons the space L is ω-homogeneous.
Finally, since every countable subset of L is contained in some Mα , α < ω1, and all spaces M2α+1 are complete,
every Cauchy sequence in L converges, which means that L is complete. Thus L has the properties required by
Theorem 5.1. �
Proof of Theorem 1.7. Let G be a topological group. According to Theorem 2.1, there exists a metric space (M,d)

such that w(M) = w(G) and G is isomorphic to a subgroup of Iso(M). We may assume that M has diameter � 1:
otherwise replace the metric d by inf(d,1). Theorem 5.1 implies that there exists a complete ω-homogeneous Urysohn
metric space L such that w(L) = w(M) and Iso(M) is isomorphic to a subgroup of Iso(L). Then w(L) = w(G) and
G is isomorphic to a subgroup of Iso(L), as required. �
6. Semigroups of bi-Katětov functions

Let (M,d) be a complete metric space of diameter � 1.

Definition 6.1. A function f :M × M → I = [0,1] is bi-Katětov if for every x ∈ M the functions f (x, ·) and f (·, x)

on M are Katětov (see Section 3).

Thus a function f :M2 → I is bi-Katětov if and only if for every x, y, z ∈ M we have∣∣f (x, y) − f (x, z)
∣∣ � d(y, z) � f (x, y) + f (x, z),∣∣f (y, x) − f (z, x)
∣∣ � d(y, z) � f (y, x) + f (z, x).

Let Θ be the compact space of all bi-Katětov functions on M2, equipped with the topology of pointwise convergence.
In the next section we shall prove that the Roelcke completion of the group Iso(M) can be identified with Θ , provided
that the complete metric space M is Urysohn and ω-homogeneous. In the present section we study the structure of an
ordered semigroup with an involution on Θ .

Recall that we defined in Section 1 an associative operation • on the set S = IM×M . If f,g ∈ S and x, y ∈ M , then

f • g(x, y) = inf
{
f (x, z) 
 g(z, y): z ∈ M

}
.

The involution f 
→ f ∗ on S is defined by f ∗(x, y) = f (y, x). Every idempotent in S satisfies the triangle inequality.
If f ∈ S is zero on the diagonal of M2, then f is an idempotent in S if and only if f satisfies the triangle inequality.
A function f ∈ S is a pseudometric on X if and only if f is zero on the diagonal and f is a symmetrical idempotent.
In particular, we have d = d∗ = d • d .

The semigroup S has a natural partial order: for p,q ∈ S the inequality p � q means that p(x, y) � q(x, y) for all
x, y ∈ M . This partial order is compatible with the semigroup structure: if p1 � p2 and q1 � q2, then p1 •q1 � p2 •q2.

It is clear that the set Θ of all bi-Katětov functions is closed under the involution. It is easy to verify that Θ also is
closed under the operation •. This fact also can be deduced from the following proposition:

Proposition 6.2. A function f :M2 → I is bi-Katětov if and only if

f • d = d • f = f, f ∗ • f � d, f • f ∗ � d,

where d is the metric on M .
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Proof. The condition f • d = f (respectively, d • f = f ) holds if and only if the function f (x, ·) (respectively,
f (·, x)) is non-expanding for every x ∈ X. The condition f ∗ • f � d (respectively, f • f ∗ � d) holds if and only if
d(y, z) � f (x, y) + f (x, z) (respectively, d(y, z) � f (y, x) + f (z, x)) for all x, y, z ∈ X. �

Let S be any ordered semigroup with an involution, and let d ∈ S be a symmetrical idempotent. The set Sd of all
x ∈ S such that

xd = dx = x, x∗x � d, xx∗ � d

is closed under the multiplication and under the involution and can be considered as a semigroup with the unity d .
Indeed, we have d ∈ Sd since d = d∗ = d2, and it is clear that d is the unity of Sd . If x, y ∈ Sd , then xyd = xy = dxy

and (xy)∗xy = y∗x∗xy � y∗dy = y∗y � d ; similarly, xy(xy)∗ � d and hence xy ∈ Sd . Thus Sd is a semigroup. If
x ∈ Sd , then x∗d = x∗d∗ = (dx)∗ = x∗ and similarly dx∗ = x∗. It follows that Sd is symmetrical.

The arguments of the preceding paragraph and Proposition 6.2 show that Θ is a semigroup with the unity d . In
general, the operation (f, g) 
→ f • g need not be continuous (not even continuous on the left or on the right).

Proposition 6.3. Let S be a closed subsemigroup of Θ , and let T be the set of all f ∈ S such that f � d . If T �= ∅,
then T has a greatest element p, and p is an idempotent.

Proof. We claim that every non-empty closed subset of Θ has a maximal element. Indeed, if C is a non-empty linearly
ordered subset of Θ , then C has a least upper bound b in Θ , and b belongs to the closure of C. Thus our claim follows
from Zorn’s lemma.

The set T is a closed subsemigroup of Θ . Let p be a maximal element of T . For every q ∈ T we have p • q �
p • d = p, whence p • q = p. It follows that p is idempotent and that p = p • q � d • q = q . Thus p is the greatest
element of T . �

We now describe all idempotents in Θ which are � d . For every closed non-empty subset F of M let bF ∈ Θ be
the bi-Katětov function defined by bF (x, y) = inf{d(x, z) 
 d(z, y): z ∈ F }. If F = ∅, let bF = 1, that is the function
on M2 which is identically equal to 1. (Note that 1 is not the unity of Θ ; on the contrary, f • 1 = 1 • f = 1 for every
f ∈ IM×M , so 1 might be called a zero element of Θ .)

Proposition 6.4. If F is a closed subset of M , then bF is an idempotent � d in Θ , and every idempotent � d in Θ is
equal to bF for some closed F ⊂ M .

Proof. Let F be a closed subset of M . It is clear that bF � d . If F �= ∅, then bF • bF (x, y) = inf{d(x, z1)
 d(z1, u)

d(u, z2) 
 d(z2, y): u ∈ M, z1, z2 ∈ F } = inf{d(x, z) 
 d(z, y): z ∈ F } = bF (x, y) for every x, y ∈ M . Thus bF is an
idempotent. The same is obviously true if F = ∅.

Conversely, let p be an idempotent in Θ such that p � d . Let F = {x ∈ M: p(x, x) = 0}. The function p :M2 → I ,
being non-expanding in each argument, is continuous, hence F is closed in M . We claim that p = bF .

We first show that p � bF . This is evident if F = ∅, so assume that F �= ∅. For every x, y, z ∈ M we have
p(x, y) � d(x, z) + p(z, y) � d(x, z) + d(z, y) + p(z, z), since the functions p(·, y) and p(z, ·) are non-expanding.
It follows that p(x, y) � inf({d(x, z) + d(z, y) + p(z, z): z ∈ F } ∪ {1}) = bF (x, y).

We prove that bF � p. Fix x, y ∈ M . We must show that bF (x, y) � p(x, y). This is evident if p(x, y) = 1, so
assume that p(x, y) < 1. Fix ε > 0 so that p(x, y) + ε < 1. Since p • p = p, for every u,v ∈ M we have p(u, v) =
inf({p(u, z) + p(z, v): z ∈ M} ∪ {1}). Hence we can construct by induction a sequence of points z1, z2, . . . in M such
that

p(x, z1) + p(z1, y) < p(x, y) + ε/2,

p(z1, z2) + p(z2, y) < p(z1, y) + ε/4,

p(z2, z3) + p(z3, y) < p(z2, y) + ε/8,

. . .

p(zn, zn+1) + p(zn+1, y) < p(zn, y) + ε/2n+1,

. . .
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Adding the first n inequalities, we get

p(x, z1) +
n−1∑
i=1

p(zi, zi+1) + p(zn, y) < p(x, y) + ε. (I)

It follows that the series
∑∞

i=1 p(zi, zi+1) converges. Since d � p, the series
∑∞

i=1 d(zi, zi+1) also converges.
This implies that the sequence z1, z2, . . . is Cauchy and hence has a limit in M . Let z = lim zi . Since the series∑∞

i=1 p(zi, zi+1) converges, we have limp(zi, zi+1) = 0 and hence p(z, z) = 0. Thus z ∈ F .
Since p is an idempotent, it satisfies the triangle inequality: p(u, v) � p(u,w) + p(w,v) for all u,v,w ∈ M .

The inequality (I) therefore implies that p(x, zn) + p(zn, y) < p(x, y) + ε for every n. Passing to the limit, we get
p(x, z) + p(z, y) � p(x, y) + ε. Thus bF (x, y) � d(x, z) + d(z, y) � p(x, z) + p(z, y) � p(x, y) + ε. Since ε was
arbitrary, it follows that bF (x, y) � p(x, y). �
Remark. We shall see later in this section that the elements of Θ (= bi-Katětov functions on M2) admit a geometric
interpretation: they correspond to metric spaces covered by two isometric copies of M . If F is a closed subset of M ,
the function bF considered above corresponds to the amalgam of two copies of M with the copies of F amalgamated.
This description, together with the geometric description of the operation • on Θ provided in the last paragraph of
this section, makes it obvious that each bF is an idempotent.

Let G = Iso(M). For every isometry ϕ ∈ G let i(ϕ) ∈ Θ be the bi-Katětov function defined by i(ϕ)(x, y) =
d(x,ϕ(y)). It is easy to check that the map i :G → Θ is a homeomorphic embedding. We claim that the em-
bedding i :G → Θ is a morphism of monoids with an involution. This means that i(eG) = d , i(ϕ−1) = i(ϕ)∗
and i(ϕψ) = i(ϕ) • i(ψ) for all ϕ,ψ ∈ G. The first equality is obvious. For the second, note that i(ϕ−1)(x, y) =
d(x,ϕ−1(y)) = d(y,ϕ(x)) = i(ϕ)(y, x) = i(ϕ)∗(x, y). For the third, note that i(ϕψ)(x, y) = d(x,ϕψ(y)) =
inf{d(x,ϕ(z)) + d(ϕ(z),ϕψ(y)): z ∈ M} = inf{d(x,ϕ(z)) + d(z,ψ(y)): z ∈ M} = inf{i(ϕ)(x, z) + i(ψ)(z, y): z ∈
M} = i(ϕ) • i(ψ)(x, y).

Thus we can identify G with a subgroup of Θ . There are natural left and right actions of G on Θ , defined by
(g,p) 
→ g • p and (g,p) 
→ p • g (g ∈ G, p ∈ Θ), respectively.

Proposition 6.5. The maps (g,p) 
→ g • p and (g,p) 
→ p • g from G × Θ to Θ are continuous. If p ∈ Θ and
x, y ∈ M , then g • p(x, y) = p(g−1(x), y) and p • g(x, y) = p(x,g(y)).

Proof. We have g • p(x, y) = inf{d(x, g(z)) 
 p(z, y): z ∈ M}. Taking z = g−1(x), we see that the right side is
� p(g−1(x), y). On the other hand, for every z ∈ M we have d(x, g(z)) + p(z, y) = d(g−1(x), z) + p(z, y) �
p(g−1(x), y), whence the opposite inequality. The continuity of the left action easily follows from the explicit formula
that we have just proved. The argument for the right action is similar. �

Let us show that all invertible elements of Θ are in i(G).
It will be useful to establish a one-to-one correspondence between elements of Θ and other objects which we call

M-triples. Let s = (h1, h2,L) be a triple such that L is a metric space of diameter � 1, hi :M → L is an isometric em-
bedding (i = 1,2) and L = h1(M) ∪ h2(M). We say that s is an M-triple. Two M-triples (h1, h2,L) and (h′

1, h
′
2,L

′)
are isomorphic if there exists an isometry g : L → L′ such that h′

i = ghi , i = 1,2.
Given an M-triple s = (h1, h2,L), let fs ∈ Θ be the bi-Katětov function defined by fs(x, y) = ρL(h1(x), h2(y)),

where ρL is the metric on L. It is easy to verify that we get in this way a one-to-one correspondence between Θ

and the set of classes of isomorphic M-triples. The subset i(G) of Θ corresponds to the set of classes of triples
s = (h1, h2,L) such that h1(M) = h2(M) = L. Indeed, if ϕ ∈ G, then for the M-triple s = (idM,ϕ,M) we have
fs = i(ϕ). Conversely, every M-triple s = (h1, h2,L) such that h1(M) = h2(M) = L is isomorphic to the triple
(idM,ϕ,M), where ϕ = h−1

1 h2 is an isometry of M . Thus s corresponds to ϕ ∈ G.

Proposition 6.6. The set of invertible elements of Θ coincides with i(G).

Proof. Let f ∈ Θ be invertible. Let s = (h1, h2,L) be an M-triple corresponding to f . This means that (L,ρ)

is a metric space, h1 and h2 are distance-preserving maps from M to L, L = h1(M) ∪ h2(M) and f (x, y) =



V.V. Uspenskij / Topology and its Applications 155 (2008) 1580–1606 1597
ρ(h1(x), h2(y)) for all x, y ∈ M . We saw that elements of G correspond to triples s satisfying the condition
h1(M) = h2(M) = L. Thus we must verify this condition.

Let g be the inverse of f . Then f • g = g • f = d . For every x ∈ M we have inf{f (x, y) + g(y, x): y ∈ M} =
f • g(x, x) = d(x, x) = 0 and hence ρ(h1(x), h2(M)) = inf{f (x, y): y ∈ M} = 0. This means that h1(x) belongs to
the closure of h2(M) in L. Since M is complete and h2 is an isometric embedding, h2(M) is closed in L. It follows
that h1(x) ∈ h2(M). Since x ∈ M was arbitrary, we have h1(M) ⊂ h2(M). Similarly, h2(M) ⊂ h1(M) and therefore
h1(M) = h2(M) = L. �

The operation • has the following description in terms of M-triples. Let p,q ∈ Θ . There exists a quadruple
s = (h1, h2, h3,L) such that (L,ρ) is a metric space of diameter � 1, L = L1 ∪ L2 ∪ L3, hi :M → Li is an
isometry (i = 1,2,3), (h1, h2,L1 ∪ L2) is an M-triple corresponding to p and (h2, h3,L2 ∪ L3) is an M-triple
corresponding to q . The bi-Katětov function f corresponding to the M-triple (h1, h3,L1 ∪ L3) depends on s,
and the largest function f over all quadruples s such as above is equal to p • q . Indeed, we have f (x, y) =
ρ(h1(x), h3(y)) � inf{ρ(h1(x), h2(z)) 
 ρ(h2(z), h3(y)): z ∈ M} = inf{p(x, z) 
 q(z, y): z ∈ M} = p • q(x, y). To
see that the function p • q can be attained, consider two disjoint copies M ′ and M ′′ of M . For x ∈ M denote by x′
the copy of x in M ′, and use similar notation for M ′′. Let ρ be the pseudometric on X = M ∪ M ′ ∪ M ′′ defined by
ρ(x, y) = ρ(x′, y′) = ρ(x′′, y′′) = d(x, y), ρ(x, y′) = p(x, y), ρ(x′, y′′) = q(x, y) and ρ(x, y′′) = p • q(x, y). The
triangle inequality for ρ is easily verified. (The space X is the amalgam (in the class of spaces of diameter � 1) of
the spaces M ∪ M ′ and M ′ ∪ M ′′ with the subspace M ′ amalgamated, see [51] for a definition.) Let L be the metric
space associated with the pseudometric space (X,ρ). Let L1, L2, L3 be the images of M , M ′, M ′′ in L, respectively.
Let hi :M → Li be the obvious isometry, i = 1,2,3. The quadruple s = (h1, h2, h3,L) has the properties considered
above, and the bi-Katětov function corresponding to the M-triple (h1, h3,L1 ∪ L3) is equal to p • q .

7. The Roelcke compactification of groups of isometries

Let (M,d) be a complete ω-homogeneous Urysohn metric space, and let G = Iso(M). In the next section we
shall prove that G is minimal and topologically simple. The idea of the proof is to explicitly describe the Roelcke
compactification of G. It turns out that the Roelcke completion of G can be identified with the compact space Θ of
all bi-Katětov functions on M2.

In the preceding section we defined the embedding i :G → Θ by i(ϕ)(x, y) = d(x,ϕ(y)). The space Θ , being
compact, has a unique compatible uniformity. Let U be the coarsest uniformity on G which makes the map i :G → Θ

uniformly continuous. We say that U is the uniformity induced by i. The uniform space (G,U) is isomorphic to i(G),
considered as a uniform subspace of Θ . We are going to prove that U is the Roelcke uniformity on G (Theorem 7.3).

Let us explain the idea of the proof. Let ϕ,ϕ′ ∈ G. We want to prove that ϕ and ϕ′ are “sufficiently close” in Θ if
and only if ϕ′ ∈ UϕU , where U is a “small” neighbourhood of the unity. Thus we are led to the following question:
under what conditions does the equation ϕ′ = ψ1ϕψ2 have a solution with “small” ψ1 and ψ2? Here “small” means
that points of a given finite subset A ⊂ M are moved by less than ε. Observe that similar questions for the equations
ϕ′ = ϕψ or ϕ′ = ψϕ have an obvious answer: ϕ′ ∈ ϕU iff ϕ and ϕ′ move points of A “almost in the same way”, that
is, d(ϕ(x),ϕ′(x)) < ε for every x ∈ A; similarly, ϕ′ ∈ Uϕ iff the inverse maps ϕ−1 and ϕ′−1 move points of A “almost
in the same way”. The equation ϕ′ = ψ1ϕψ2 with two unknowns ψ1 and ψ2 looks more complicated. However, the
answer to the above question is easy also in this case: the condition ϕ′ ∈ UϕU means that the finite metric spaces
A ∪ ϕ(A) and A ∪ ϕ′(A) are close to each other in the Gromov–Hausdorff metric.

We shall need the notion of the Gromov–Hausdorff metric only for finite metric spaces with a given enumeration
(it differs from the usual notion dealing with non-enumerated spaces). Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be
two such spaces. The Gromov–Hausdorff distance for enumerated spaces between X and Y , denoted by den

GH (X,Y ),
is the infimum of the numbers max{D(xi, yi): i = 1, . . . , n}, taken over all pseudometrics D on X ∪ Y (we assume
that X and Y are disjoint) such that D induces the given metrics on X and Y . If X and Y have diameter � 1, we may
assume that the same is true for (X ∪ Y,D), otherwise replace D by D ∧ 1. Since the Urysohn space (M,d) contains
an isometric copy of every finite metric space of diameter � 1 (Proposition 1.6), it follows that den

GH (X,Y ) is the
infimum of the numbers max{d(ai, bi): i = 1, . . . , n}, where ai, bi ∈ M (1 � i � n) are such that the correspondences
xi 
→ ai and yi 
→ bi are isometric embeddings of X and Y into M , respectively.
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Proposition 7.1. Let (X,dX) and (Y, dY ) be two enumerated finite metric spaces, X = {x1, . . . , xn}, Y = {y1, . . . , yn}.
Let

ε = max
{∣∣dX(xi, xj ) − dY (yi, yj )

∣∣: i, j = 1, . . . , n
}
.

Then den
GH (X,Y ) = ε/2.

Proof. The inequality � is obvious: if D is a pseudometric on X ∪ Y extending dX and dY and ε = |dX(xi, xj ) −
dY (yi, yj )|, then at least one of the numbers D(xi, yi) and D(xj , yj ) must be � ε/2. To prove the reverse inequality,
we construct a pseudometric D on Z = X ∪ Y extending dX and dY such that

D(xi, yi) = ε/2, i = 1, . . . , n.

The function D is defined by these requirements on X2, Y 2, and the set {(xi, yi): i = 1, . . . , n}. To see that D can be
extended to a pseudometric on Z, it suffices to verify that for any sequence z1, . . . , zs of points of Z such that all the
expressions D(zi, zi+1) (1 � i < s) and D(z1, zs) are defined the inequality

D(z1, zs) �
s−1∑
i=1

D(zi, zi+1) (A)

holds. Then the required extension is given by the formula

D(z, z′) = inf
s−1∑
i=1

D(zi, zi+1),

where the infimum is taken over all chains z1 = z, z2, . . . , zs = z′ such that all the terms D(zi, zi+1) are defined. An
easy argument using induction shows that (A) follows from its special case: for any “quadrangle” in Z of the form xi ,
yi , yj , xj each of the four numbers dX(xi, xj ), D(xi, yi), dY (yi, yj ), and D(xj , yj ) does not exceed the sum of the
three others. This case is obvious: for example, since dX(xi, xj ) − dY (yi, yj ) � ε, we have

dX(xi, xj ) � dY (yi, yj ) + ε = D(xi, yi) + dY (yi, yj ) + D(xj , yj ). �
Corollary 7.2. Let (X,d) be an Urysohn metric space. Let a1, . . . , an, b1, . . . , bn ∈ X, and suppose that∣∣d(ai, aj ) − d(bi, bj )

∣∣ � 2ε

for all i, j = 1, . . . , n. Then there exist points c1, . . . , cn ∈ X such that d(ci, cj ) = d(bi, bj ) and d(ai, ci) � ε for all
i, j = 1, . . . , n.

We now are in a position to prove the main result of this section. Recall that (M,d) is a complete ω-homogeneous
Urysohn metric space, G = Iso(M), and Θ is the space of bi-Katětov functions on M2 considered in the previous
section.

Theorem 7.3. The range of the embedding i :G → Θ is dense in Θ . The uniformity U on G induced by the embedding
i coincides with the Roelcke uniformity L∧R. Therefore, G is Roelcke-precompact, and the Roelcke compactification
of G can be identified with Θ .

Proof. If A is a finite subset of M and ε > 0, let UA,ε = {ψ ∈ G: d(ψ(x), x) < ε for every x ∈ A} ∈ N (G). Let
WA,ε be the set of all pairs (f, g) ∈ Θ2 such that |f (x, y) − g(x, y)| < ε for all x, y ∈ A. The sets of the form WA,ε

constitute a base of entourages of the uniformity on Θ . If (f, g) ∈ W = WA,ε , we say that f and g are W -close. Our
proof proceeds in three parts.

(a) We prove that i(G) is dense in Θ . Let f ∈ Θ , and let Of be a neighbourhood of f in Θ . We must prove that
i(ϕ) ∈ Of for some ϕ ∈ G.

We may assume that Of is the set of all g ∈ Θ such that g is WA,ε -close to f :

Of = {
g ∈ Θ:

∣∣g(x, y) − f (x, y)
∣∣ < ε for all x, y ∈ A

}
,
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where A is a finite subset of M and ε > 0. Let A = {a1, . . . , an}. We claim that there exist points b1, . . . , bn ∈ M such
that d(bi, bj ) = d(ai, aj ) and d(ai, bj ) = f (ai, aj ), 1 � i, j � n. Indeed, since f is bi-Katětov, the formulas above
define a pseudometric on the set F = {a1, . . . , an, b1, . . . , bn}, where b1, . . . , bn are new points. Since M is Urysohn,
the embedding of A into M extends to a distance-preserving map from F to M .

Since M is ω-homogeneous, there exists an isometry ϕ of M such that ϕ(ai) = bi , 1 � i � n. Let g = i(ϕ). For
every i, j ∈ [1, n] we have g(ai, aj ) = d(ai, ϕ(aj )) = d(ai, bj ) = f (ai, aj ). Thus g ∈ Of . This proves that i(G) is
dense in Θ .

(b) We prove that the uniformity U is coarser than L∧R.
Whenever a topological group H acts continuously on a compact space X (on the left), for every x ∈ X the orbit

map h 
→ hx from H to X is right-uniformly continuous. We saw that G acts continuously on Θ (Proposition 6.5).
The embedding i :G → Θ can be viewed as the orbit map corresponding to d , the neutral element of Θ . It follows that
i is R-uniformly continuous. Similarly, i is L-uniformly continuous (use the right action of G on Θ , or, alternatively,
use the involution on Θ to deduce L-uniform continuity of i from its R-uniform continuity). Therefore, the uniformity
U is coarser than both L and R and hence coarser than L∧R.

(c) We prove that U is finer than L∧R. It suffices to show that for every U ∈ N (G) there exists an entourage W of
the uniformity on Θ (in other words, a neighbourhood of the diagonal of Θ2) with the following property: if ϕ,ϕ′ ∈ G

are such that i(ϕ) and i(ϕ′) are W -close, then ϕ′ ∈ UϕU . Assume that U = UA,ε . We claim that W = WA,2ε has the
required property.

Let ϕ,ϕ′ ∈ G be such that i(ϕ) and i(ϕ′) are WA,2ε -close. This means that

δ = max
{∣∣d(

x,ϕ(y)
) − d

(
x,ϕ′(y)

)∣∣: x, y ∈ A
}

< 2ε.

Let A = {a1, . . . , an}, bi = ϕ(ai) and ci = ϕ′(ai), i = 1, . . . , n. We have d(bi, bj ) = d(ai, aj ) = d(ci, cj ) and
|d(ai, bj ) − d(ai, cj | � δ for all i and j . In virtue of Corollary 7.2, there exist points a′

1, . . . , a
′
n, b

′
1, . . . , b

′
n ∈ M

such that the correspondence ai 
→ a′
i , bi 
→ b′

i is distance-preserving and d(a′
i , ai) � δ/2 < ε, d(b′

i , ci) � δ/2 < ε.
Since M is ω-homogeneous, there exists an isometry ψ1 of M such that ψ1(ai) = a′

i and ψ1(bi) = b′
i , i = 1, . . . , n.

We have ψ1 ∈ U , since each ai is moved by less than ε. Put ψ2 = ϕ−1ψ−1
1 ϕ′. For every i = 1, . . . , n we have

d(ψ2(ai), ai) = d(ϕ′(ai),ψ1ϕ(ai)) = d(ci, b
′
i ) < ε, hence ψ2 ∈ U = UA,ε . Thus ϕ′ = ψ1ϕψ2 ∈ UϕU , as re-

quired. �
Recall that a non-empty collection F of non-empty subsets of a set X is a filter base on X if for every A,B ∈ F

there is C ∈ F such that C ⊂ A ∩ B . If X is a topological space, F is a filter base on X and x ∈ X, then x is a cluster
point of F if every neighbourhood of x meets every member of F , and F converges to x if every neighbourhood of x

contains a member of F . If F and G are two filter bases on G, let FG = {AB: A ∈ F , B ∈ G}.
For every p ∈ Θ let Fp = {G ∩ V : V is a neighbourhood of p in Θ}. In other words, Fp is the trace on G of the

filter of neighbourhoods of p in Θ . If p,q ∈ Θ , it is not true in general that FpFq converges to p • q . However, we
have the following result, which will be used in the proof of Theorem 1.8:

Proposition 7.4. If p,q ∈ Θ , then p • q is a cluster point of the filter base FpFq .

Proof. Let U1, U2, U3 be neighbourhoods of p, q and p • q , respectively. We must show that U3 meets the set
(U1 ∩ i(G))(U2 ∩ i(G)).

We may assume that for some finite set A = {a1, . . . , an} ⊂ M and ε > 0 we have

U1 = {
f ∈ Θ:

∣∣f (x, y) − p(x, y)
∣∣ < ε for all x, y ∈ A

}
,

U2 = {
f ∈ Θ:

∣∣f (x, y) − q(x, y)
∣∣ < ε for all x, y ∈ A

}
,

U3 = {
f ∈ Θ:

∣∣f (x, y) − p • q(x, y)
∣∣ < ε for all x, y ∈ A

}
.

We saw in the last paragraph of the preceding section that there exist a metric space (L,ρ) and isometric embed-
dings hi : M → L (i = 1,2,3) such that p(x, y) = ρ(h1(x), h2(y)), q(x, y) = ρ(h2(x), h3(y)) and p • q(x, y) =
ρ(h1(x), h3(y)) for all x, y ∈ M . Let X = h1(A) ∪ h2(A) ∪ h3(A). Since M is Urysohn, there exists an iso-
metric embedding of X into M which extends the isometry h−1

1 :h1(A) → A. It follows that there exist points
b1, . . . , bn, c1 . . . , cn ∈ M such that d(bi, bj ) = d(ci, cj ) = d(ai, aj ), d(ai, bj ) = p(ai, aj ), d(bi, cj ) = q(ai, aj ) and
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d(ai, cj ) = p • q(ai, aj ) for all i, j . Since M is ω-homogeneous, there exists an isometry ϕ ∈ G such that ϕ(ai) = bi ,
1 � i � n. Let xi = ϕ−1(ci). Using again the ω-homogeneity of M , we find an isometry ψ ∈ G such that ψ(ai) = xi ,
1 � i � n. Note that ϕψ(ai) = ci and d(ai, xj ) = d(ϕ(ai), ϕ(xj )) = d(bi, cj ) = q(ai, aj ) for all i, j . We claim that
i(ϕ) ∈ U1, i(ψ) ∈ U2 and i(ϕψ) ∈ U3. Indeed, we have i(ϕ)(x, y) = d(x,ϕ(y)) = p(x, y) for all x, y ∈ A and hence
i(ϕ) ∈ U1. The other two cases are considered similarly. Thus i(ϕψ) ∈ ((U1 ∩ i(G))(U2 ∩ i(G))) ∩ U3 �= ∅. �

If H is a group and g ∈ H , we denote by lg (respectively, rg) the left shift of H defined by lg(h) = gh (respectively,
the right shift defined by rg(h) = hg).

Proposition 7.5. Let H be a topological group, and let K be the Roelcke completion of H . Let g ∈ H . Each of the
following self-maps of H extends to a self-homeomorphism of K :

(1) the left shift lg ;
(2) the right shift rg ;
(3) the inversion g 
→ g−1;
(4) the inner automorphism h 
→ ghg−1.

Proof. Let L and R be the left and the right uniformity on H , respectively. In each of the cases (1)–(4) the map
f :H → H under consideration is an automorphism of the uniform space (H,L∧R). This is obvious for the cases (3)
and (4). For the cases (1) and (2), observe that the uniformities L and R are invariant under left and right shifts, hence
the same is true for their greatest lower bound L∧R. It follows that in all cases f extends to an automorphism of the
completion K of the uniform space (H,L∧R). �

For the group G and its Roelcke completion Θ the validity of Proposition 7.5 can be seen directly. Recall that the
embedding i :G → Θ is a morphism of monoids with an involution (see the two paragraphs before Proposition 6.5).
The involution f 
→ f ∗ on Θ is continuous and hence coincides with the extension of the inversion on G given by
Proposition 7.5. For every g ∈ G let Lg , Rg and Inng be the self-maps of Θ defined by Lg(p) = g •p, Rg(p) = p • g

and Inng(p) = g • p • g−1. These maps are extensions over Θ of the left shift lg of G, the right shift rg , and the inner
automorphism lg ◦ rg−1 , respectively. In virtue of Proposition 6.5, the maps Lg and Rg are continuous, and the same
is true for Inng = Lg ◦ Rg−1 .

An inner automorphism of Θ is a map of the form Inng , g ∈ G. Proposition 6.5 shows that Inng(p)(x, y) =
p(g−1(x), g−1(y)) for all p ∈ Θ and x, y ∈ M . It follows that for every closed F ⊂ M we have Inng(bF ) = bg(F ),
where bF is the idempotent corresponding to F (see Proposition 6.4).

Proposition 7.6. There are precisely two idempotents in Θ which are � d and are invariant under all inner automor-
phisms: the unity d and the constant 1.

Proof. According to Proposition 6.4, every idempotent � d is of the form bF for some closed F ⊂ M . If bF is
invariant under inner automorphisms, then bg(F ) = Inng(bF ) = bF and hence g(F ) = F for every g ∈ G. Since the
action of G on M is transitive, no proper non-empty subset of M is G-invariant. Thus either F = M or F = ∅.
Accordingly, either bF = d or bF = 1. �
8. Proof of Theorem 1.8

We preserve the notation of the preceding section: M is a complete ω-homogeneous Urysohn metric space, G =
Iso(M), Θ is the set of all bi-Katětov functions on M2. We saw that G is Roelcke-precompact and that Θ can be
identified with the Roelcke compactification of G (Theorem 7.3). In this section we prove that G is minimal and
topologically simple.

Proposition 8.1. For every topological group H the following conditions are equivalent:

(1) H is minimal and topologically simple;
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(2) if f :H → H ′ is a continuous onto homomorphism of topological groups, then either f is a homeomorphism or
|H ′| = 1.

Proposition 8.2. The group G has no compact normal subgroups other than {e}.

We shall prove later that actually G has no non-trivial closed normal subgroups.

Proof. Let H �= {e} be a normal subgroup of G. We show that H is not compact.
Fix a ∈ M and f ∈ H such that f (a) �= a. Let r = d(f (a), a), and let S = {x ∈ M: d(x, a) = r} be the sphere of

radius r centered at a. We claim that the orbit Ha contains S. Fix x ∈ S. Since M is ω-homogeneous, there exists
an isometry g ∈ G which leaves the point a fixed and maps f (a) to x. Let h = gfg−1. Since H is normal, we have
h ∈ H and hence x = h(a) ∈ Ha. Thus S ⊂ Ha, as claimed.

Since M is Urysohn, we can construct by induction an infinite sequence x1, x2, . . . of points in S such that all the
pairwise distances between distinct members of this sequence are equal to r . Since S ⊂ Ha, it follows that Ha is not
compact. Hence H is not compact. �

Let (L,ρ) be a metric space. A self-map f : L → L is non-expanding if ρ(f (x), f (y)) � ρ(x, y) for all x, y ∈ L.

Lemma 8.3. Let (L,ρ) be a metric space, and let F be the semigroup of all non-expanding self-maps of L, equipped
with the topology of pointwise convergence. Then the map (f, g) 
→ f ◦ g from F 2 to F is continuous. Thus F is a
topological semigroup.

This lemma and Proposition 8.4 below are well known. We include a proof for the reader’s convenience.

Proof. It suffices to show that for every x ∈ L the map (f, g) 
→ f (g(x)) from F 2 to L is continuous. Fix f0, g0 ∈ F ,
x ∈ L and ε > 0. Let y = g0(x), Of0 = {f ∈ F : ρ(f (y), f0(y)) < ε} and Og0 = {g ∈ F : ρ(g(x), y) < ε}. If f ∈ Of0
and g ∈ Og0, then ρ(f (g(x)), f0(g0(x))) � ρ(f (g(x)), f (y)) + ρ(f (y), f0(y)) < ρ(g(x), y) + ε < 2ε. �
Proposition 8.4. If L is a complete metric space, then the group Iso(L) is complete.

Recall that we call a topological group complete if it is complete with respect to the upper uniformity.

Proof. Let X = LL be the set of all self-maps of L, equipped with the product uniformity. The group H = Iso(L)

can be considered as a subset of X. The uniformity U on H induced by the product uniformity on X coincides with
the left uniformity L. Indeed, a basic entourage for U has the form WA,ε = {(f, g) ∈ H 2: ρ(f (x), g(x)) < ε for all
x ∈ A}, where ρ is the metric on L, A is a finite subset of L and ε > 0. Let UA,ε = {f ∈ H : ρ(f (x), x) < ε for
all x ∈ A}. Then UA,ε is a basic neighbourhood of unity in H , and WA,ε = {(f, g) ∈ H 2: g−1f ∈ UA,ε} is a basic
entourage for L. Thus U = L. It follows that the map g → g−1 from H to X induces the right uniformity on H ,
and the map j :H → X2 defined by j (g) = (g, g−1) induces the upper uniformity L ∨ R. Since X2 is complete,
to prove that H is complete it suffices to show that j (H) is closed in X2. Let F be the set of all non-expanding
self-maps of L. Then F is closed in X. The map (f, g) 
→ f ◦ g from F 2 to F is continuous (Lemma 8.3). Since
j (G) = {(f, g) ∈ F 2: fg = gf = idL}, it follows that j (G) is closed in F 2 and hence in X2. �

We say that a metric space L is homogeneous if every point of L can be mapped to every other point by an isometry
of L onto itself.

Lemma 8.5. If L is a homogeneous metric space, then w(Iso(L)) = w(L).

Proof. For every metric space X we have w(Iso(X)) � w(X). If X is homogeneous, then for every a ∈ X the map
f → f (a) from Iso(X) to X is onto, whence w(X) � w(Iso(X)). �

We are now ready to prove Theorem 1.8:
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If M is a complete ω-homogeneous Urysohn metric space, then the group G = Iso(M) is complete, Roelcke-
precompact, minimal and topologically simple. The weight of G is equal to the weight of M .

Proof. We saw that G is Roelcke-precompact (Theorem 7.3). Proposition 8.4 shows that G is complete, and
Lemma 8.5 shows that w(G) = w(M). Let f :G → G′ be a continuous onto homomorphism. According to Proposi-
tion 8.1, to prove that G is minimal and topologically simple, it suffices to prove that either f is a homeomorphism or
|G′| = 1.

Since G is Roelcke-precompact, so is G′. Let Θ ′ be the Roelcke compactification of G′. The homomorphism f

extends to a continuous map F : Θ → Θ ′. Let e′ be the unity of G′, and let S = F−1(e′) ⊂ Θ .

Claim 1. S is a subsemigroup of Θ .

Let p,q ∈ S. In virtue of Proposition 7.4, there exist filter bases Fp and Fq on G such that Fp converges to p

(in Θ), Fq converges to q and p • q is a cluster point of the filter base FpFq . The filter bases F ′
p = F(Fp) and

F ′
q = F(Fq) on G′ converge to F(p) = F(q) = e′, hence the same is true for the filter base F ′

pF ′
q = F(FpFq). Since

p • q is a cluster point of FpFq , F(p • q) is a cluster point of the convergent filter base F(FpFq). A convergent filter
on a Hausdorff space has only one cluster point, namely the limit. Thus F(p • q) = e′ and hence p • q ∈ S.

Claim 2. The semigroup S is closed under involution.

In virtue of Proposition 7.5, the inversion on G′ extends to an involution x 
→ x∗ of Θ ′. Since F(p∗) = F(p)∗ for
every p ∈ G, the same holds for every p ∈ Θ . Let p ∈ S. Then F(p∗) = F(p)∗ = e′ and hence p∗ ∈ S.

Claim 3. If g ∈ G and g′ = f (g), then F−1(g′) = g • S = S • g.

We saw that the left shift h 
→ gh of G extends to a continuous self-map L = Lg of Θ defined by l(p) = g • p

(Proposition 6.5). According to Proposition 7.5, the self-map x 
→ g′x of G′ extends to a self-homeomorphism L′
of Θ ′. The maps F ◦ L and L′ ◦ F from Θ to Θ ′ coincide on G and hence everywhere. Replacing g by g−1, we see
that F ◦L−1 = (L′)−1 ◦F . Thus F−1(g′) = F−1L′(e′) = LF−1(e′) = g •S. Using right shifts, we similarly conclude
that F−1(g′) = S • g.

Claim 4. S is invariant under inner automorphisms of Θ .

We have just seen that g • S = S • g for every g ∈ G, hence g • S • g−1 = S.
Let T = {f ∈ S: f � d}. Note that i(eG) = d ∈ T �= ∅. According to Proposition 6.3, there is a greatest element p

in T , and p is idempotent. Since inner automorphisms of Θ preserve the order on Θ and the unity d , Claim 4 implies
that p is invariant under inner automorphisms. In virtue of Proposition 7.6, either p = d or p = 1. We shall show that
either f is a homeomorphism or |G′| = 1, according to which of the cases p = d or p = 1 holds.

Consider first the case p = d .

Claim 5. If p = d , then all elements of S are invertible in Θ .

Let f ∈ S. Then f ∗ • f ∈ S and f • f ∗ ∈ S, since S is a symmetrical semigroup. According to Proposition 6.2, we
have f ∗ • f � d and f • f ∗ � d . Since p = d , there are no elements > d in S. Thus the inequalities f ∗ • f � d and
f • f ∗ � d are actually equalities. It follows that f ∗ is the inverse of f .

Claim 6. If p = d , then S = {e}.

Claim 5 and Proposition 6.6 imply that S is a subgroup of G. This subgroup is normal (Claim 4) and compact,
since S is closed in Θ . Proposition 8.2 implies that S = {e}.

Claim 7. If p = d , then f : G → G′ is a homeomorphism.
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Claims 6 and 3 imply that G = F−1(G′) and that the map f : G → G′ is bijective. Since F is a map between
compact spaces, it is perfect, and hence so is the map f :G = F−1(G′) → G′. Thus f , being a perfect bijection, is a
homeomorphism.

Now consider the case p = 1.

Claim 8. If 1 ∈ S, then G′ = {e′}.

Let g ∈ G and g′ = f (g). We have g • 1 = 1 ∈ S. On the other hand, Claim 3 implies that g • 1 ∈ g • S = F−1(g′).
Thus g′ = F(g • 1) = F(1) = e′. �
9. Remarks

1. Let M be a complete ω-homogeneous Urysohn metric space, and let G = Iso(M). In Section 7 we identified the
Roelcke completion of G with the set Θ of all bi-Katětov functions on M2. The set Θ was equipped with structures
of three kinds: topology, order, semigroup structure. The proof of Theorem 1.8 was based on the interplay between
these three structures. We now establish a natural one-to-one correspondence between Θ and a set of closed relations
on a compact space. This correspondence will be an isomorphism for all three structures on Θ .

Let K be a compact space. A closed relation on K is a closed subset of K2. Let E(K) be the compact space
of all closed relations on K , equipped with the Vietoris topology. The set E(K) has a natural partial order. If
R,S ∈ E(K), then the composition R ◦ S is a closed relation, since R ◦ S is the image of the closed subset
{(x, z, y): (x, z) ∈ S, (z, y) ∈ R} of K3 under the projection K3 → K2 which is a closed map. Thus E(K) is a
semigroup with involution. In general the map (R,S) 
→ R ◦ S from E(K)2 to E(K) is not separately continuous
(neither left nor right continuous).

We denote by Homeo(K) the group of all self-homeomorphisms of K , equipped with the compact-open topology.
For every h ∈ Homeo(K) let Γ (h) = {(x,h(x)): x ∈ K} be the graph of h. The map h 
→ Γ (h) from Homeo(K)

to E(K) is a homeomorphic embedding and a morphism of monoids with an involution. The uniformity induced on
Homeo(K) by this embedding is coarser than the Roelcke uniformity.

Now let K be the compact space of all non-expanding functions f :M → I = [0,1], considered as a subspace of
the product IM . There is a natural left action of G on K , defined by gf (x) = f (g−1(x)) (g ∈ G, f ∈ K , x ∈ M). This
action gives rise to a morphism G → Homeo(K) of topological groups which is easily seen to be a homeomorphic
embedding. Let j :G → E(K) be the composition of this embedding with the map h 
→ Γ (h) from Homeo(K) to
E(K). If g ∈ G, then j (g) is the relation {(f, gf ): f ∈ K}. Let Φ be the closure of j (G) in E(K). Let Θ and
i :G → Θ be the same as in Sections 6 and 7.

Theorem 9.1. The uniformity on G induced by the embedding j :G → E(K) coincides with the Roelcke uniformity,
hence Φ can be identified with the Roelcke compactification of G. The set Φ is a subsemigroup of E(K). There exists
a unique homeomorphism H :Φ → Θ such that i = Hj . The map H is an isomorphism of ordered semigroups.

We omit the detailed proof and confine ourselves by a description of the isomorphism H . If R ∈ Φ , let H(R) be
the bi-Katětov function on M2 defined by H(R)(x, y) = sup{|q(x) − p(y)|: (p, q) ∈ R}, x, y ∈ M . If f ∈ Θ , the
relation H−1(f ) is defined by H−1(f ) = {(p, q) ∈ K2: |q(x) − p(y)| � f (x, y) for all x, y ∈ M2}.

Let us see what some of the results about Θ obtained in Section 6 mean in terms of relations on K . Functions
p ∈ Θ which are � d correspond (via the isomorphism H ) to relations R ∈ Φ which contain the diagonal of K2 or,
in other words, are reflexive. Thus Proposition 6.2 implies that for every R ∈ Φ the relations RR−1 and R−1R are
reflexive. This is equivalent to the fact that for every R ∈ Φ the domain and the range of R is equal to K .

According to Proposition 6.4, each idempotent � d in Θ has the form bF for some closed F ⊂ M . Note that each
bF is symmetrical. Symmetrical idempotents � d in Θ correspond to relations in Φ which are reflexive, symmetrical
and transitive or, in other words, are equivalence relations. For every closed F ⊂ M let RF = H(bF ) be the equiva-
lence relation corresponding to the idempotent bF . Two non-expanding functions f,g ∈ K are RF -equivalent if and
only if f |F = g|F . Proposition 6.4 implies that an equivalence relation R on K belongs to Φ if and only if R = RF

for some closed F ⊂ M .



1604 V.V. Uspenskij / Topology and its Applications 155 (2008) 1580–1606
2. Let H be a Hilbert space, and let G = U(H) be the group of all unitary operators on H , equipped with the
pointwise convergence topology. L. Stoyanov proved that G is totally minimal [42,9]. The methods of the present
paper yield an alternative proof of this theorem. Let B(H) be the algebra of all bounded linear operators on H . The
weak operator topology on B(H) is the coarsest topology such that for every x, y ∈ H the function A 
→ (Ax,y) on
B(H) is continuous. Let T = {A: ‖A‖ � 1} be the unit ball in B(H), equipped with the weak operator topology. The
Roelcke compactification of the group G can be identified with T [46]. The set T is a semigroup, and the idempotents
in T are the orthogonal projectors. The proof of the fact that G is totally minimal proceeds similarly to the proof
of Theorem 1.8. Let us indicate the main steps. Let f : G → G′ be a surjective morphism of topological groups. To
prove that G is totally minimal, it suffices to prove that f is a quotient map. Extend f to a map F :T → T ′, where
T ′ is the Roelcke compactification of G′. Let e′ be the unity of G′, and let S = F−1(e′) be the kernel of F . Then S is
a closed subsemigroup of T . It turns out that every closed subsemigroup of T contains a least idempotent. Let p be
the least idempotent in S. Since S is invariant under inner automorphisms of Θ , so is p. It follows that either p = 1
or p = 0. If p = 1, then S ⊂ G, G = F−1(G′) and the map f is perfect. If p = 0, then G′ = {e′}. See [46] for more
details.

3. Our method of proving minimality, based on the consideration of the Roelcke compactifications, can be applied
to some groups of homeomorphisms. A zero-dimensional compact space X is h-homogeneous if all non-empty clopen
subsets of X are homeomorphic to each other. Let K be a zero-dimensional h-homogeneous compact space, and let
G = Homeo(K). Then G is minimal and topologically simple [49]. Let us sketch a proof of this fact which closely
follows the proof of Theorem 1.8. In the special case when K = 2ω is the Cantor set, the minimality of Homeo(K)

was proved by Gamarnik [11].
Let T be the compact space of all closed relations R on K such that the domain and the range of R are equal to K .

The map h 
→ Γ (h) from G to T induces the Roelcke uniformity on G, and the range Γ (G) of this map is dense in T .
Thus the Roelcke compactification of G can be identified with T . We noted that the set E(K) of all closed relations
on K is an ordered semigroup with an involution. The set T is a closed symmetrical subsemigroup of E(K). Let Δ

be the diagonal in K2. A relation R ∈ E(K) is an equivalence relation if and only if R is a symmetrical idempotent
and R ⊃ Δ. Let S be a closed subsemigroup of E(K), and let S1 be the set of all R ∈ S such that R ⊃ Δ. The proof
of Proposition 6.3 shows that the set S1, if it is non-empty, has a largest element P , and P is an idempotent. If S is
symmetrical, then so is P , hence P is an equivalence relation.

Now let f :G → G′ be a surjective morphism of topological groups. We show that either f is a homeomorphism
or |G′| = 1. According to Proposition 8.1, this means that G is minimal and topologically simple. Extend f to a map
F :T → T ′, where T ′ is the Roelcke compactification of G′. Let e′ be the unity of G′, and let S = F−1(e′). Then S

is a closed symmetrical subsemigroup of T . Let P be the largest element in the set S1 = {R ∈ S: Δ ⊂ R}. Then P is
an equivalence relation on K . Since S is G-invariant, so is P . But there are only two G-invariant closed equivalence
relations on K , namely Δ and K2. If P = Δ, then S ⊂ G, G = F−1(G′) and f is perfect. Since G has no non-trivial
compact normal subgroups, we conclude that f is a homeomorphism. If P = K2, then S = T and G′ = {e′}.

It is not clear if a similar argument can be used when K is a Hilbert cube and G = Homeo(K), see Problem 1.4.
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