61 research outputs found

    Understanding biomolecular motion, recognition, and allostery by use of conformational ensembles

    Get PDF
    We review the role conformational ensembles can play in the analysis of biomolecular dynamics, molecular recognition, and allostery. We introduce currently available methods for generating ensembles of biomolecules and illustrate their application with relevant examples from the literature. We show how, for binding, conformational ensembles provide a way of distinguishing the competing models of induced fit and conformational selection. For allostery we review the classic models and show how conformational ensembles can play a role in unravelling the intricate pathways of communication that enable allostery to occur. Finally, we discuss the limitations of conformational ensembles and highlight some potential applications for the future

    Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.</p> <p>Methods</p> <p>A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and <it>in silico </it>mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.</p> <p>Results</p> <p>Cross-matching of literature and <it>in silico</it>-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.</p> <p>Conclusion</p> <p>The comprehensive literature and <it>in silico</it>-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of <it>M. tuberculosis </it>infection, to be incorporated in rBCG or subunit-based vaccines.</p

    Danish Urogynaecological Database

    No full text
    Ulla Darling Hansen,1 Kim Oren Gradel,2 Michael Due Larsen2 1Department of Gynaecology and Obstetrics, Odense University Hospital, 2Center for Clinical Epidemiology, Odense University Hospital, and Research Unit of Clinical Epidemiology, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark Abstract: The Danish Urogynaecological Database is established in order to ensure high quality of treatment for patients undergoing urogynecological surgery. The database contains details of all women in Denmark undergoing incontinence surgery or pelvic organ prolapse surgery amounting to ~5,200 procedures per year. The variables are collected along the course of treatment of the patient from the referral to a postoperative control. Main variables are prior obstetrical and gynecological history, symptoms, symptom-related quality of life, objective urogynecological findings, type of operation, complications if relevant, implants used if relevant, 3&ndash;6-month postoperative recording of symptoms, if any. A set of clinical quality indicators is being maintained by the steering committee for the database and is published in an annual report which also contains extensive descriptive statistics. The database has a completeness of over 90% of all urogynecological surgeries performed in Denmark. Some of the main variables have been validated using medical records as gold standard. The positive predictive value was above 90%. The data are used as a quality monitoring tool by the hospitals and in a number of scientific studies of specific urogynecological topics, broader epidemiological topics, and the use of patient reported outcome measures. Keywords: urogynecology, pelvic organ prolapse surgery, incontinence surgery, surgical quality monitorin

    Self-similar hierarchical honeycombs

    No full text
    corecore