106 research outputs found

    Aldose reductase deficiency in mice protects from ragweed pollen extract (RWE)-induced allergic asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR), a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR<sup>-/-</sup>) mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE)-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat.</p> <p>Methods</p> <p>The wild type (WT) and AR<sup>-/- </sup>mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL) were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS)-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4<sup>+</sup>CD25<sup>+ </sup>T cells population.</p> <p>Results</p> <p>Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR<sup>-/- </sup>mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4<sup>+</sup>CD25<sup>+</sup>FoxP3<sup>+</sup>) cells as compared to RWE-sensitized and challenged mice not treated with fidarestat.</p> <p>Conclusion</p> <p>Our results using AR<sup>-/- </sup>mice strongly suggest the role of AR in allergic asthma pathogenesis and effectiveness of oral administration of AR inhibitor in RWE-induced asthma in mice supports the use of AR inhibitors in the treatment of allergic asthma.</p

    Accelerating the Drug Delivery Pipeline for Acute and Chronic Pancreatitis: Summary of the Working Group on Drug Development and Trials in Chronic Pancreatitis at the National Institute of Diabetes and Digestive and Kidney Diseases Workshop

    Get PDF
    The lack of effective therapeutic agents specifically tailored for chronic pancreatitis (CP) has hampered clinical care and negatively impacted patients' lives. New mechanistic insights now point to novel therapies, which involve both recently developed and/or repurposed agents. This working group focused on 2 main outcomes for CP: pain and progression of disease. The goal is to frame the essential aspects of trial design including patient-centered outcomes, proposed methods to measure the outcomes of pain and progression, and study design considerations for future trials to facilitate rapid drug development for patients with CP

    Aldose Reductase Inhibition Prevents Metaplasia of Airway Epithelial Cells

    Get PDF
    BACKGROUND: Goblet cell metaplasia that causes mucus hypersecretion and obstruction in the airway lumen could be life threatening in asthma and chronic obstructive pulmonary disease patients. Inflammatory cytokines such as IL-13 mediate the transformation of airway ciliary epithelial cells to mucin-secreting goblet cells in acute as well as chronic airway inflammatory diseases. However, no effective and specific pharmacologic treatment is currently available. Here, we investigated the mechanisms by which aldose reductase (AR) regulates the mucus cell metaplasia in vitro and in vivo. METHODOLOGY/FINDINGS: Metaplasia in primary human small airway epithelial cells (SAEC) was induced by a Th2 cytokine, IL-13, without or with AR inhibitor, fidarestat. After 48 h of incubation with IL-13 a large number of SAEC were transformed into goblet cells as determined by periodic acid-schiff (PAS)-staining and immunohistochemistry using antibodies against Mucin5AC. Further, IL-13 significantly increased the expression of Mucin5AC at mRNA and protein levels. These changes were significantly prevented by treatment of the SAEC with AR inhibitor. AR inhibition also decreased IL-13-induced expression of Muc5AC, Muc5B, and SPDEF, and phosphorylation of JAK-1, ERK1/2 and STAT-6. In a mouse model of ragweed pollen extract (RWE)-induced allergic asthma treatment with fidarestat prevented the expression of IL-13, phosphorylation of STAT-6 and transformation of epithelial cells to goblet cells in the lung. Additionally, while the AR-null mice were resistant, wild-type mice showed goblet cell metaplasia after challenge with RWE. CONCLUSIONS: The results show that exposure of SAEC to IL-13 caused goblet cell metaplasia, which was significantly prevented by AR inhibition. Administration of fidarestat to mice prevented RWE-induced goblet cell metaplasia and AR null mice were largely resistant to allergen induced changes in the lung. Thus our results indicate that AR inhibitors such as fidarestat could be developed as therapeutic agents to prevent goblet cell metaplasia in asthma and related pathologies

    Seasonal prediction skill of winter temperature over North India

    Get PDF
    This document is the Accepted Manuscript version of the following article: Tiwari, P.R., Kar, S.C., Mohanty, U.C. et al. Theor Appl Climatol (2016) 124: 15. The final publication is available at Springer via https://doi.org/10.1007/s00704-015-1397-y. © Springer-Verlag Wien 2015.The climatology, amplitude error, phase error, and mean square skill score (MSSS) of temperature predictions from five different state-of-the-art general circulation models (GCMs) have been examined for the winter (December–January– February) seasons over North India. In this region, temperature variability affects the phenological development processes of wheat crops and the grain yield. The GCM forecasts of temperature for a whole season issued in November from various organizations are compared with observed gridded temperature data obtained from the India Meteorological Department (IMD) for the period 1982–2009. The MSSS indicates that the models have skills of varying degrees. Predictions of maximum and minimum temperature obtained from the National Centers for Environmental Prediction (NCEP) climate forecast system model (NCEP_CFSv2) are compared with station level observations from the Snow and Avalanche Study Establishment (SASE). It has been found that when the model temperatures are corrected to account the bias in the model and actual orography, the predictions are able to delineate the observed trend compared to the trend without orography correction.Peer reviewedFinal Accepted Versio

    Inhibition of Aldose Reductase Prevents Experimental Allergic Airway Inflammation in Mice

    Get PDF
    The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR), contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.Primary Human Small Airway Epithelial Cells (SAEC) were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE)-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS), cycloxygenase (COX)-2, Prostaglandin (PG) E(2), IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results indicate that inhibition of AR prevents airway inflammation and production of inflammatory cytokines, accumulation of eosinophils in airways and sub-epithelial regions, mucin production in the bronchoalveolar lavage fluid and airway hyperresponsiveness in mice.These results suggest that airway inflammation due to allergic response to RWE, which subsequently activates oxidative stress-induced expression of inflammatory cytokines via NF-kappaB-dependent mechanism, could be prevented by AR inhibitors. Therefore, inhibition of AR could have clinical implications, especially for the treatment of airway inflammation, a major cause of asthma pathogenesis

    Amelioration of Acute Kidney Injury in Lipopolysaccharide-Induced Systemic Inflammatory Response Syndrome by an Aldose Reductase Inhibitor, Fidarestat

    Get PDF
    Systemic inflammatory response syndrome is a fatal disease because of multiple organ failure. Acute kidney injury is a serious complication of systemic inflammatory response syndrome and its genesis is still unclear posing a difficulty for an effective treatment. Aldose reductase (AR) inhibitor is recently found to suppress lipopolysaccharide (LPS)-induced cardiac failure and its lethality. We studied the effects of AR inhibitor on LPS-induced acute kidney injury and its mechanism.Mice were injected with LPS and the effects of AR inhibitor (Fidarestat 32 mg/kg) before or after LPS injection were examined for the mortality, severity of renal failure and kidney pathology. Serum concentrations of cytokines (interleukin-1β, interleukin-6, monocyte chemotactic protein-1 and tumor necrosis factor-α) and their mRNA expressions in the lung, liver, spleen and kidney were measured. We also evaluated polyol metabolites in the kidney.Mortality rate within 72 hours was significantly less in LPS-injected mice treated with AR inhibitor both before (29%) and after LPS injection (40%) than untreated mice (90%). LPS-injected mice showed marked increases in blood urea nitrogen, creatinine and cytokines, and AR inhibitor treatment suppressed the changes. LPS-induced acute kidney injury was associated with vacuolar degeneration and apoptosis of renal tubular cells as well as infiltration of neutrophils and macrophages. With improvement of such pathological findings, AR inhibitor treatment suppressed the elevation of cytokine mRNA levels in multiple organs and renal sorbitol accumulation.AR inhibitor treatment ameliorated LPS-induced acute kidney injury, resulting in the lowered mortality

    Chronic pancreatitis: Pediatric and adult cohorts show similarities in disease progress despite different risk factors

    Get PDF
    Objectives: To investigate the natural history of chronic pancreatitis (CP), patients in the North American Pancreatitis Study2 (NAPS2, adults) and INternational Study group of Pediatric Pancreatitis: In search for a cuRE (INSPPIRE, pediatric) were compared. Methods: Demographics, risk factors, disease duration, management and outcomes of 224 children and 1,063 adults were compared using appropriate statistical tests for categorical and continuous variables. Results: Alcohol was a risk in 53% of adults and 1% of children (p<0.0001); tobacco in 50% of adults and 7% of children (p<0.0001). Obstructive factors were more common in children (29% vs 19% in adults, p=0.001). Genetic risk factors were found more often in children. Exocrine pancreatic insufficiency was similar (children 26% vs adult 33%, p=0.107). Diabetes was more common in adults than children (36% vs 4% respectively, p<0.0001). Median emergency room visits, hospitalizations, and missed days of work/school were similar across the cohorts. As a secondary analysis, NAPS2 subjects with childhood onset (NAPS2-CO) were compared to INSPPIRE subjects. These two cohorts were more similar than the total INSPPIRE and NAPS2 cohorts, including for genetic risk factors. The only risk factor significantly more common in the NAPS2-CO cohort compared with the INSPPIRE cohort was alcohol (9% NAPS2-CO vs 1% INSPPIRE cohorts, p=0.011). Conclusions: Despite disparity in age of onset, children and adults with CP exhibit similarity in demographics, CP treatment, and pain. Differences between groups in radiographic findings and diabetes prevalence may be related to differences in risk factors associated with disease and length of time of CP

    A Novel Peptide Derived from Human Pancreatitis-Associated Protein Inhibits Inflammation In Vivo and In Vitro and Blocks NF-Kappa B Signaling Pathway

    Get PDF
    BACKGROUND: Pancreatitis-associated protein (PAP) is a pancreatic secretory protein belongs to the group VII of C-type lectin family. Emerging evidence suggests that PAP plays a protective effect in inflammatory diseases. In the present study, we newly identified a 16-amino-acid peptide (named PAPep) derived from C-type lectin-like domain (CTLD) of human PAP with potent anti-inflammatory activity using both in vivo and in vitro assays. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the anti-inflammatory effect of PAPep on endotoxin-induced uveitis (EIU) in rats and demonstrated that intravitreal pretreatment of PAPep concentration-dependently attenuated clinical manifestation of EIU rats, reduced protein leakage and cell infiltration into the aqueous humor (AqH), suppressed tumor necrosis factor (TNF)-α, interleukin (IL)-6, intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein (MCP)-1 production in ocular tissues, and improved histopathologic manifestation of EIU. Furthermore, PAPep suppressed the LPS-induced mRNA expression of TNF-α and IL-6 in RAW 264.7 cells, inhibited protein expression of ICAM-1 in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) as well as U937 cells adhesion to HUVECs. Western blot analysis in ocular tissues and different cell lines revealed that the possible mechanism for this anti-inflammatory effect of PAPep may depend on its ability to inhibit the activation of NF-kB signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our studies provide the first evidence that the sequence of PAPep is within the critically active region for the anti-inflammatory function of PAP and the peptide may be a promising candidate for the management of ocular inflammatory diseases
    corecore