25 research outputs found

    Cytosorb® haemoadsorption: a potential game changer for patients needing myocardial surgical revascularisation

    Get PDF
    Cytosorb, an extracorporeal blood purification system, utilises the principles of haemoadsorption to remove low molecular weight substances from the blood, including multiple cytokines such as interleukin (IL)-1b, IL-6, IL-8, and tumour necrosis factor-α, and anti-platelet drugs aiming to improve clinical outcomes. Given the prominent role of pro-inflammatory cytokines in various inflammatory states, Cytosorb has seen growing application as a therapeutic immunomodulator including surgery. This review focuses on the effects of the use of Cytosorb in patients undergoing coronary artery bypass grafting (CABG) and the indications of removal of cytokines and anti-platelet agents such as ticagrelor. The evidence supports the feasibility and safety profile of Cytosorb, with no device-related adverse events reported in all studies. Initial studies suggest significant potential for Cytosorb in urgent or emergency CABG surgery to remove anti-platelet medication with promising benefits on clinical outcomes including fewer blood product transfusions, decreased length of intensive care unit stay, and lower re-sternotomy rates. Furthermore, a cost saving analysis indicated that intraoperative removal of ticagrelor with Cytosorb would be cost effective in the setting of emergency cardiac surgery. However, the evidence remains inconclusive when Cytosorb is used in elective CABG surgery for cytokine removal. Definite high quality clinical trials for both indications for Cytosorb in CABG surgery are needed to clarify if there is a clinically significant benefit in clinical outcomes. There is substantial trial activity for the application of Cytosorb in higher risk cardiac surgery to establish the place of Cytosorb in future treatment pathways in cardiac surgery

    Metric for Measuring the Effectiveness of Clustering of DNA Microarray Expression

    Get PDF
    BACKGROUND: The recent advancement of microarray technology with lower noise and better affordability makes it possible to determine expression of several thousand genes simultaneously. The differentially expressed genes are filtered first and then clustered based on the expression profiles of the genes. A large number of clustering algorithms and distance measuring matrices are proposed in the literature. The popular ones among them include hierarchal clustering and k-means clustering. These algorithms have often used the Euclidian distance or Pearson correlation distance. The biologists or the practitioners are often confused as to which algorithm to use since there is no clear winner among algorithms or among distance measuring metrics. Several validation indices have been proposed in the literature and these are based directly or indirectly on distances; hence a method that uses any of these indices does not relate to any biological features such as biological processes or molecular functions. RESULTS: In this paper we have proposed a metric to measure the effectiveness of clustering algorithms of genes by computing inter-cluster cohesiveness and as well as the intra-cluster separation with respect to biological features such as biological processes or molecular functions. We have applied this metric to the clusters on the data set that we have created as part of a larger study to determine the cancer suppressive mechanism of a class of chemicals called retinoids. We have considered hierarchal and k-means clustering with Euclidian and Pearson correlation distances. Our results show that genes of similar expression profiles are more likely to be closely related to biological processes than they are to molecular functions. The findings have been supported by many works in the area of gene clustering. CONCLUSION: The best clustering algorithm of genes must achieve cohesiveness within a cluster with respect to some biological features, and as well as maximum separation between clusters in terms of the distribution of genes of a behavioral group across clusters. We claim that our proposed metric is novel in this respect and that it provides a measure of both inter and intra cluster cohesiveness. Best of all, computation of the proposed metric is easy and it provides a single quantitative value, which makes comparison of different algorithms easier. The maximum cluster cohesiveness and the maximum intra-cluster separation are indicated by the metric when its value is 0. We have demonstrated the metric by applying it to a data set with gene behavioral groupings such as biological process and molecular functions. The metric can be easily extended to other features of a gene such as DNA binding sites and protein-protein interactions of the gene product, special features of the intron-exon structure, promoter characteristics, etc. The metric can also be used in other domains that use two different parametric spaces; one for clustering and the other one for measuring the effectiveness

    Inhibition of HCV 3a genotype entry through Host CD81 and HCV E2 antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage hepatocellular carcinoma and death. HCV glycoproteins play an important role in HCV entry by binding with CD81 receptors. Hence inhibition of virus at entry step is an important target to identify antiviral drugs against HCV.</p> <p>Methods and result</p> <p>The present study elaborated the role of CD81 and HCV glycoprotein E2 in HCV entry using retroviral pseudo-particles of 3a local genotype. Our results demonstrated that HCV specific antibody E2 and host antibody CD81 showed dose- dependent inhibition of HCV entry. HCV E2 antibody showed 50% reduction at a concentration of 1.5 ± 1 μg while CD81 exhibited 50% reduction at a concentration of 0.8 ± 1 μg. In addition, data obtained with HCVpp were also confirmed with the infection of whole virus of HCV genotype 3a in liver cells.</p> <p>Conclusion</p> <p>Our data suggest that HCV specific E2 and host CD81 antibodies reduce HCVpp entry and full length viral particle and combination of host and HCV specific antibodies showed synergistic effect in reducing the viral titer.</p

    Initial toxicity assessment of ICON6: a randomised trial of cediranib plus chemotherapy in platinum-sensitive relapsed ovarian cancer

    Get PDF
    Background: Cediranib is a potent oral vascular endothelial growth factor (VEGF) signalling inhibitor with activity against all three VEGF receptors. The International Collaboration for Ovarian Neoplasia 6 (ICON6) trial was initiated based on evidence of single-agent activity in ovarian cancer with acceptable toxicity. Methods: The ICON6 trial is a 3-arm, 3-stage, double-blind, placebo-controlled randomised trial in first relapse of platinum-sensitive ovarian cancer. Patients are randomised (2?:?3?:?3) to receive six cycles of carboplatin (AUC5/6) plus paclitaxel (175?mg?m-2) with either placebo (reference), cediranib 20?mg per day, followed by placebo (concurrent), or cediranib 20?mg per day, followed by cediranib (concurrent plus maintenance). Cediranib or placebo was continued for 18 months or until disease progression. The primary outcome measure for stage I was safety, and the blinded results are presented here. Results: Sixty patients were included in the stage I analysis. A total of 53 patients had received three cycles of chemotherapy and 42 patients had completed six cycles. In all, 19 out of 60 patients discontinued cediranib or placebo during chemotherapy because of adverse events/intercurrent illness (n=9); disease progression (n=1); death (n=3); patient decision (n=1); administrative reasons (n=1); and multiple reasons (n=4). Grade 3 and 4 toxicity was experienced by 30 (50%) and 3 (5%) patients, respectively. No gastrointestinal perforations were observed. Conclusion: The addition of cediranib to platinum-based chemotherapy is sufficiently well tolerated to expand the ICON6 trial and progress to stage II
    corecore