9,217 research outputs found

    Exclusion of the Locus for Autosomal Recessive Pseudohypoaldosteronism Type 1 from the Mineralocorticoid Receptor Gene Region on Human Chromosome 4q by Linkage Analysis.

    Get PDF
    Pseudohypoaldosteronism type 1 (PHA1) is an uncommon inherited disorder characterized by salt-wasting in infancy arising from target organ unresponsiveness to mineralocorticoids. Clinical expression of the disease varies from severely affected infants who may die to apparently asymptomatic individuals. Inheritance is Mendelian and may be either autosomal dominant or autosomal recessive. A defect in the mineralocorticoid receptor has been implicated as a likely cause of PHA1. The gene for human mineralocorticoid receptor (MLR) has been cloned and physically mapped to human chromosome 4q31.1-31.2. The etiological role of MLR in autosomal recessive PHA1 was investigated by performing linkage analysis between PHA1 and three simple sequence length polymorphisms (D4S192, D4S1548, and D4S413) on chromosome 4q in 10 consanguineous families. Linkage analysis was carried out assuming autosomal recessive inheritance with full penetrance and zero phenocopy rate using the MLINK program for two-point analysis and the HOMOZ program for multipoint analysis. Lod scores of less than -2 were obtained over the whole region from D4S192 to D4S413 encompassing MLR. This provdes evidence against MLR as the site of mutations causing PHA1 in the majority of autosomal recessive families

    Theory of superconductor-insulator transition in single Josephson junctions

    Full text link
    A non-band theory is developed to describe the superconductor-insulator (SI) transtition in resistively shunted, single Josephson junctions. The I−VI-V characteristic is formulated by a Landauer-like formula and evaluated by the path-integral transfer-matrix method. The result is consistent with the recent experiments at around 80 mKmK. However, the insulator phase shrinks with decreasing temperature indicating that the single Josephson junction becomes all superconducting at absolute zero temperature, as long as dissipation is present.Comment: 4 pages, 3 figure

    Strong Collapse Turbulence in Quintic Nonlinear Schr\"odinger Equation

    Full text link
    We consider the quintic one dimensional nonlinear Schr\"odinger equation with forcing and both linear and nonlinear dissipation. Quintic nonlinearity results in multiple collapse events randomly distributed in space and time forming forced turbulence. Without dissipation each of these collapses produces finite time singularity but dissipative terms prevents actual formation of singularity. In statistical steady state of the developed turbulence the spatial correlation function has a universal form with the correlation length determined by the modulational instability scale. The amplitude fluctuations at that scale are nearly-Gaussian while the large amplitude tail of probability density function (PDF) is strongly non-Gaussian with power-like behavior. The small amplitude nearly-Gaussian fluctuations seed formation of large collapse events. The universal spatio-temporal form of these events together with the PDF for their maximum amplitudes define the power-like tail of PDF for large amplitude fluctuations, i.e., the intermittency of strong turbulence.Comment: 14 pages, 17 figure

    Real-space renormalization group approach for the corner Hamiltonian

    Full text link
    We present a real-space renormalization group approach for the corner Hamiltonian, which is relevant to the reduced density matrix in the density matrix renormalization group. A set of self-consistent equations that the renormalized Hamiltonian should satisfy in the thermodynamic limit is also derived from the fixed point of the recursion relation for the corner Hamiltonian. We demonstrate the renormalization group algorithm for the S=1/2S=1/2 XXZ spin chain and show that the results are consistent with the exact solution. We further examine the renormalization group for the S=1 Heisenberg spin chain and then discuss the nature of the eigenvalue spectrum of the corner Hamiltonian for the non-integrable model.Comment: 7 page

    Observation of exotic meson production in the reaction π−p→η′π−p \pi^{-} p \to \eta^{\prime} \pi^- p at 18 GeV/c

    Full text link
    An amplitude analysis of an exclusive sample of 5765 events from the reaction π−p→η′π−p\pi^{-} p \to \eta^{\prime} \pi^- p at 18 GeV/c is described. The η′π−\eta^{\prime} \pi^- production is dominated by natural parity exchange and by three partial waves: those with JPC=1−+,2++,J^{PC} = 1^{-+}, 2^{++}, and 4++4^{++}. A mass-dependent analysis of the partial-wave amplitudes indicates the production of the a2(1320)a_2(1320) meson as well as the a4(2040)a_4(2040) meson, observed for the first time decaying to η′π−\eta^{\prime}\pi^-. The dominant, exotic (non-qqˉ)q\bar{q}) 1−+1^{-+} partial wave is shown to be resonant with a mass of 1.597±0.010−0.010+0.0451.597 \pm 0.010^{+0.045}_{-0.010} GeV/c^2 and a width of 0.340±0.040±0.0500.340 \pm 0.040 \pm 0.050 GeV/c^2 . This exotic state, the π1(1600)\pi_1(1600), is produced with a tt dependence which is different from that of the a2(1320)a_2(1320) meson, indicating differences between the production mechanisms for the two states.Comment: 5 pages with 4 figure

    Charge form factor of π\pi and KK mesons

    Full text link
    The charge form factor of π\pi and KK mesons is evaluated adopting a relativistic constituent quark model based on the light-front formalism. The relevance of the high-momentum components of the meson wave function, for values of the momentum transfer accessible to CEBAFCEBAF energies, is illustrated. The predictions for the elastic form factor of π\pi and KK mesons are compared with the results of different relativistic approaches, showing that the measurements of the pion and kaon form factors planned at CEBAFCEBAF could provide information for discriminating among various models of the meson structure.Comment: 8 pages, latex, 4 figures available as separate .uu fil

    Evidence for Exotic J^{PC}=1^{-+} Meson Production in the Reaction pi- p --> eta pi- p at 18 GeV/c

    Full text link
    Details of the analysis of the eta pi- system studied in the reaction pi^{-} p --> eta pi^{-} p at 18 GeV/c are given. Separate analyses for the 2 gamma and pi+ pi- pi0 decay modes of the eta are presented. An amplitude analysis of the data indicates the presence of interference between the a(2)(1320)- and a J^{PC}=1^{-+} wave between 1.2 and 1.6 GeV/c^2. The phase difference between these waves shows phase motion not attributable solely to the a(2)(1320)-. The data can be fitted by interference between the a(2)(1320)- and an exotic 1^{-+} resonance with M = 1370 +-16 +50 -30} MeV/c^2 and Gamma = 385 +- 40 +65 -105 MeV/c^2. Our results are compared with those of other experiments.Comment: 50 pages of text and 34 figure

    Entanglement Perturbation Theory for Antiferromagnetic Heisenberg Spin Chains

    Full text link
    A recently developed numerical method, entanglement perturbation theory (EPT), is used to study the antiferromagnetic Heisenberg spin chains with z-axis anisotropy λ\lambda and magnetic field B. To demonstrate the accuracy, we first apply EPT to the isotropic spin-1/2 antiferromagnetic Heisenberg model, and find that EPT successfully reproduces the exact Bethe Ansatz results for the ground state energy, the local magnetization, and the spin correlation functions (Bethe ansatz result is available for the first 7 lattice separations). In particular, EPT confirms for the first time the asymptotic behavior of the spin correlation functions predicted by the conformal field theory, which realizes only for lattice separations larger than 1000. Next, turning on the z-axis anisotropy and the magnetic field, the 2-spin and 4-spin correlation functions are calculated, and the results are compared with those obtained by Bosonization and density matrix renormalization group methods. Finally, for the spin-1 antiferromagnetic Heisenberg model, the ground state phase diagram in λ\lambda space is determined with help of the Roomany-Wyld RG finite-size-scaling. The results are in good agreement with those obtained by the level-spectroscopy method.Comment: 12 pages, 14 figure
    • …
    corecore