9,217 research outputs found
Exclusion of the Locus for Autosomal Recessive Pseudohypoaldosteronism Type 1 from the Mineralocorticoid Receptor Gene Region on Human Chromosome 4q by Linkage Analysis.
Pseudohypoaldosteronism type 1 (PHA1) is an uncommon inherited disorder characterized by salt-wasting in infancy arising from target organ unresponsiveness to mineralocorticoids. Clinical expression of the disease varies from severely affected infants who may die to apparently asymptomatic individuals. Inheritance is Mendelian and may be either autosomal dominant or autosomal recessive. A defect in the mineralocorticoid receptor has been implicated as a likely cause of PHA1. The gene for human mineralocorticoid receptor (MLR) has been cloned and physically mapped to human chromosome 4q31.1-31.2. The etiological role of MLR in autosomal recessive PHA1 was investigated by performing linkage analysis between PHA1 and three simple sequence length polymorphisms (D4S192, D4S1548, and D4S413) on chromosome 4q in 10 consanguineous families. Linkage analysis was carried out assuming autosomal recessive inheritance with full penetrance and zero phenocopy rate using the MLINK program for two-point analysis and the HOMOZ program for multipoint analysis. Lod scores of less than -2 were obtained over the whole region from D4S192 to D4S413 encompassing MLR. This provdes evidence against MLR as the site of mutations causing PHA1 in the majority of autosomal recessive families
Theory of superconductor-insulator transition in single Josephson junctions
A non-band theory is developed to describe the superconductor-insulator (SI)
transtition in resistively shunted, single Josephson junctions. The
characteristic is formulated by a Landauer-like formula and evaluated by the
path-integral transfer-matrix method. The result is consistent with the recent
experiments at around 80 . However, the insulator phase shrinks with
decreasing temperature indicating that the single Josephson junction becomes
all superconducting at absolute zero temperature, as long as dissipation is
present.Comment: 4 pages, 3 figure
Strong Collapse Turbulence in Quintic Nonlinear Schr\"odinger Equation
We consider the quintic one dimensional nonlinear Schr\"odinger equation with
forcing and both linear and nonlinear dissipation. Quintic nonlinearity results
in multiple collapse events randomly distributed in space and time forming
forced turbulence. Without dissipation each of these collapses produces finite
time singularity but dissipative terms prevents actual formation of
singularity. In statistical steady state of the developed turbulence the
spatial correlation function has a universal form with the correlation length
determined by the modulational instability scale. The amplitude fluctuations at
that scale are nearly-Gaussian while the large amplitude tail of probability
density function (PDF) is strongly non-Gaussian with power-like behavior. The
small amplitude nearly-Gaussian fluctuations seed formation of large collapse
events. The universal spatio-temporal form of these events together with the
PDF for their maximum amplitudes define the power-like tail of PDF for large
amplitude fluctuations, i.e., the intermittency of strong turbulence.Comment: 14 pages, 17 figure
Real-space renormalization group approach for the corner Hamiltonian
We present a real-space renormalization group approach for the corner
Hamiltonian, which is relevant to the reduced density matrix in the density
matrix renormalization group. A set of self-consistent equations that the
renormalized Hamiltonian should satisfy in the thermodynamic limit is also
derived from the fixed point of the recursion relation for the corner
Hamiltonian. We demonstrate the renormalization group algorithm for the
XXZ spin chain and show that the results are consistent with the exact
solution. We further examine the renormalization group for the S=1 Heisenberg
spin chain and then discuss the nature of the eigenvalue spectrum of the corner
Hamiltonian for the non-integrable model.Comment: 7 page
Observation of exotic meson production in the reaction at 18 GeV/c
An amplitude analysis of an exclusive sample of 5765 events from the reaction
at 18 GeV/c is described. The
production is dominated by natural parity exchange and by
three partial waves: those with and . A
mass-dependent analysis of the partial-wave amplitudes indicates the production
of the meson as well as the meson, observed for the
first time decaying to . The dominant, exotic
(non- partial wave is shown to be resonant with a mass of
GeV/c^2 and a width of GeV/c^2 . This exotic state, the , is produced with a
dependence which is different from that of the meson, indicating
differences between the production mechanisms for the two states.Comment: 5 pages with 4 figure
Charge form factor of and mesons
The charge form factor of and mesons is evaluated adopting a
relativistic constituent quark model based on the light-front formalism. The
relevance of the high-momentum components of the meson wave function, for
values of the momentum transfer accessible to energies, is illustrated.
The predictions for the elastic form factor of and mesons are
compared with the results of different relativistic approaches, showing that
the measurements of the pion and kaon form factors planned at could
provide information for discriminating among various models of the meson
structure.Comment: 8 pages, latex, 4 figures available as separate .uu fil
Evidence for Exotic J^{PC}=1^{-+} Meson Production in the Reaction pi- p --> eta pi- p at 18 GeV/c
Details of the analysis of the eta pi- system studied in the reaction pi^{-}
p --> eta pi^{-} p at 18 GeV/c are given. Separate analyses for the 2 gamma and
pi+ pi- pi0 decay modes of the eta are presented. An amplitude analysis of the
data indicates the presence of interference between the a(2)(1320)- and a
J^{PC}=1^{-+} wave between 1.2 and 1.6 GeV/c^2. The phase difference between
these waves shows phase motion not attributable solely to the a(2)(1320)-. The
data can be fitted by interference between the a(2)(1320)- and an exotic 1^{-+}
resonance with M = 1370 +-16 +50 -30} MeV/c^2 and Gamma = 385 +- 40 +65 -105
MeV/c^2. Our results are compared with those of other experiments.Comment: 50 pages of text and 34 figure
Entanglement Perturbation Theory for Antiferromagnetic Heisenberg Spin Chains
A recently developed numerical method, entanglement perturbation theory
(EPT), is used to study the antiferromagnetic Heisenberg spin chains with
z-axis anisotropy and magnetic field B. To demonstrate the accuracy,
we first apply EPT to the isotropic spin-1/2 antiferromagnetic Heisenberg
model, and find that EPT successfully reproduces the exact Bethe Ansatz results
for the ground state energy, the local magnetization, and the spin correlation
functions (Bethe ansatz result is available for the first 7 lattice
separations). In particular, EPT confirms for the first time the asymptotic
behavior of the spin correlation functions predicted by the conformal field
theory, which realizes only for lattice separations larger than 1000. Next,
turning on the z-axis anisotropy and the magnetic field, the 2-spin and 4-spin
correlation functions are calculated, and the results are compared with those
obtained by Bosonization and density matrix renormalization group methods.
Finally, for the spin-1 antiferromagnetic Heisenberg model, the ground state
phase diagram in space is determined with help of the Roomany-Wyld RG
finite-size-scaling. The results are in good agreement with those obtained by
the level-spectroscopy method.Comment: 12 pages, 14 figure
- …