Measurement of
 Inclusive $f_{1}(1285)$ and $f_{1}(1420)$ Production in Z Decays with the DELPHI Detector

M. Chapkin, S.-U. Chung, P. Gavillet,
V. Obraztsov, D. Ryabchikov, A. Sokolov, S. Todorovova-Nova, V. Uvarov, C. Weiser

Abstract

Inclusive production of two $(K \bar{K} \pi)^{0}$ states in the mass region $1.22-1.56 \mathrm{GeV}$ in Z decay at LEP I has been observed by the DELPHI Collaboration. The measured masses and widths are 1274 ± 4 and $29 \pm 12 \mathrm{MeV}$ for the first peak and 1426 ± 4 and $51 \pm 14 \mathrm{MeV}$ for the second. A partial-wave analysis has been performed on the $(K \bar{K} \pi)^{0}$ spectrum in the mass range; the first peak is consistent with the quantum numbers $I^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+} / 1^{++}\right)$and the second with $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{++}\right)$. These measurements, as well as their total hadronic production rates per hadronic Z decay, are consistent with the mesons of the type $n \bar{n}$, where $n=\{u, d\}$. They are very likely to be the $f_{1}(1285)$ and the $f_{1}(1420)$, respectively.

1 Introduction

The inclusive production of mesons has been a subject of long-standing study at LEP[1][2], as it provides an insight into the nature of fragmentation of quarks and gluons to hadrons. So far the studies have been done on the S-wave mesons (both ${ }^{1} S_{0}$ and ${ }^{3} S_{1}$) such as π and ρ, as well as certain P-wave mesons $f_{2}(1270)$ and $K_{2}^{*}(1430)$ (i.e. ${ }^{3} P_{2}$) and $f_{0}(980)$ and $a_{0}(980)\left({ }^{3} P_{0}\right)$. Very little is known about the production of mesons belonging to other P-wave (i.e. ${ }^{3} P_{1}$ and ${ }^{1} P_{1}$). For the first time, we present in this paper a study of the inclusive production of $J^{P C}=1^{++}$mesons $f_{1}(1285)$ and $f_{1}(1420)$ (i.e. $\left.{ }^{3} P_{1}\right)$.

There are at least four nonstrange isoscalar mesons $[3], I^{G}\left(J^{P C}\right)=0^{+}\left(1^{++}\right)$and $I^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)$, known in the mass region between 1.2 and 1.5 GeV , which couple strongly to the decay channel $(K \bar{K} \pi)^{0}$. They are $f_{1}(1285), \eta(1295), f_{1}(1420)$ and $\eta(1440)$. All are seen prominently in the peripheral production from $\pi^{-} p$ interactions[3], indicating that, despite their decay into $(K \bar{K} \pi)^{0}$, they are mostly $n \bar{n}$ states, where $n=\{u, d\}$. There are possibly two additional states, $I^{G}\left(J^{P C}\right)=0^{-} ?\left(1^{+-}\right) h_{1}(1380)$ and $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{++}\right)$ $f_{1}(1510)$, which may harbor a large $s \bar{s}$ content, as they are produced with considerable cross sections in the peripheral reactions involving $K^{-} p$ interactions[3]. Given this complexity with the $(K \bar{K} \pi)^{0}$ systems, it is important that one seek answers to which resonances among these are readily excited in inclusive hadron Z decays.

The DELPHI data for this study is based on the neutral $K \bar{K} \pi$ channel in the reaction

$$
\begin{equation*}
Z \rightarrow\left(K_{S} K^{ \pm} \pi^{\mp}\right)+X^{0} \tag{1}
\end{equation*}
$$

Section 2 is devoted to the selection process for the event sample collected for this study. Sections 3 deals with a study of the $K \bar{K} \pi$ mass spectra. A partial-wave analysis is presented in Section 4. A discussion of the results and conclusions are given in Section 5.

2 Experimental Procedure

The analysis presented here is based on a data sample of about 3.3 million hadronic Z decays collected from 1992 to 1995 with the DELPHI detector. Detailed description of the DELPHI detector and its performance can be found elsewhere[4][5].

The charged particle tracks have been measured in the 1.2-T magnetic field by a set of tracking detectors. The average momentum resolution for charged particles in hadronic final states, $\Delta p / p$, is usually between 0.001 and 0.01 , depending on their momentum as well as which detectors are included in the track fit.

A charged particle has been accepted in this analysis - if its momentum p is greater than $100 \mathrm{MeV} / c$; its momentum error Δp is less than p; and its impact parameter with respect to the nominal crossing point is within 4 cm in the transverse ($x y$) plane and 4 $\mathrm{cm} / \sin \theta$ along the beam direction (z-axis), θ being the polar angle of the track.

Hadronic events are then selected by requiring at least 5 charged particles, with at least $3-\mathrm{GeV}$ energy in each hemisphere of the event-defined with respect to the beam direction-and total energy at least 12% of the center-of-mass energy. The contamination from events due to beam-gas scattering and to $\gamma-\gamma$ interactions is estimated to be less than 0.1% and the background from $\tau^{+} \tau^{-}$events less than 0.2% of the accepted events.

After these cuts, there remain about $680000,680000,1350000$ and 650000 events for the 1992, 1993, 1994 and 1995 run periods, respectively.

After the event selection, in order to ensure a better signal-to-background ratio for the resonances in the $K_{S} K^{ \pm} \pi^{\mp}$ invariant mass spectra, tighter requirements have been imposed on the track impact parameters with respect to the nominal crossing point, i.e. they have to be within 0.2 cm in the transverse plane and $0.4 \mathrm{~cm} / \sin \theta$ along the beam direction.
$K^{ \pm}$identification has been provided by the RICH detectors for particles with momenta above $700 \mathrm{MeV} / \mathrm{c}$, while the ionization loss measured in the TPC has been used for momenta above $100 \mathrm{MeV} / c$. The corresponding identification tags are based on the combined probabilities, derived from the average Cherenkov angle and the number of observed photons in the Ring Imaging Cherenkov (RICH) detectors, as well as the measured $\mathrm{d} E / \mathrm{d} x$ in the Time Projection Chamber (TPC). Cuts on the tags have been applied to achieve the best signal-to-background ratio, while rejecting $e^{ \pm}, \mu^{ \pm}, p$ and \bar{p} tracks. A more detailed description of the identification tags can be found in Ref. [1]. In the present case, the $K^{ \pm}$ identification efficiency has been estimated by comparing the $\phi(1020) \rightarrow K^{+} K^{-}$signal in the experimental data with the simulated events generated with JETSET[6]-tuned with the DELPHI parameters[7]—and passed through the detector simulation program DELSIM[8]. Agreement within 4% is observed between the data and the simulation.

The K_{S} candidates are detected by their decay in flight into $\pi^{+} \pi^{-}$. The details of the method and the various cuts applied are described in Ref. [9]. Our selection process consists of taking the V^{0} 's passing certain criteria for quality of the reconstruction plus a mass cut given by $0.45<M\left(K_{S}\right)<0.55 \mathrm{GeV}$.

After all the above cuts, only events with at least one $K_{S} K^{+} \pi^{-}$or $K_{S} K^{-} \pi^{+}$combination have been kept in the present analysis, corresponding to a sample of 705688 events.

$3 K_{S} K^{ \pm} \pi^{\mp}$ Mass Spectra

A histogram of the $K_{S} K^{ \pm} \pi^{\mp}$ mass spectrum is shown in Fig. 1. Also shown in the figure is the same mass spectrum with a $K^{*}(892)$ cut, which would be appropriate if the decay of a resonance had proceeded through a $K^{*}(892)$ intermdediate state. Neither histogram shows visible enhancement in the mass region between 1.25 to 1.45 GeV .

This is due to the enormous background in this mass region coming from the high number of $K_{S} K^{ \pm} \pi^{\mp}$ combinations $(\simeq\langle 9\rangle)$ per event in inclusive Z decays. The key to a successful study of the $f_{1}(1285)$ and $f_{1}(1420)$-under the circumstances - is to make a mass cut $M\left(K_{S} K^{ \pm}\right) \leq 1.04 \mathrm{GeV}$, as shown in Fig. 2, where two clear peaks are now seen in this mass region. There are two reasons for this: (1) the decay mode $a_{0}(980)^{ \pm} \pi^{\mp}$ is selected by the mass cut, while the general background for the $K \bar{K} \pi$ system is reduced by a factor of $\simeq 7$ at 1.42 GeV or more at higher masses; (2) the interference effect of the two $K^{*}(892)$ bands on the Dalitz plot at $M(K \bar{K} \pi) \sim 1.4 \mathrm{GeV}$ is enhanced, if the G-parity is positive[12].

In order to measure the resonance parameters for these two states, we have first generated a Monte Carlo sample, deleting-from the existing MC package - all mesons with a major decay mode into $(K \bar{K} \pi)^{0}$ in the mass region 1.25 to 1.45 GeV , i.e. $f_{1}(1285)$, $h_{1}(1380)$ and $f_{1}(1420)$, which is then passed through the standard detector simulation program. The smooth curve shown in Fig. 2 has been obtained by fitting the mass spectrum of the aforementioned MC sample between 1.15 to 1.65 GeV with a background

Figure 1: $M\left(K_{S} K^{ \pm} \pi^{\mp}\right)$ distributions from the Z decays with the DELPHI detector at LEP I. The histogram with solid (open) circles is for the full data sample (with a K^{*} cut $0.822<$ $M(K \pi)<0.962 \mathrm{GeV})$.
function

$$
\begin{equation*}
f_{b}(M)=\left(M-M_{0}\right)^{\alpha_{1}} \exp \left(\alpha_{2} M+\alpha_{3} M^{2}\right) \tag{2}
\end{equation*}
$$

where M and M_{0} are the effective masses of the $(K \bar{K} \pi)^{0}$ system and its threshold, respectively, and α_{i} are the experimental parameters. We have fitted the $(K \bar{K} \pi)^{0}$ spectrum adding two S-wave Breit-Wigner forms to the background $f_{b}(M)$, given by

$$
\begin{equation*}
f_{r}(M)=\frac{\Gamma_{r}^{2}}{\left(M-M_{r}\right)^{2}+\left(\Gamma_{r} / 2\right)^{2}} \tag{3}
\end{equation*}
$$

where M_{r} and Γ_{r} are the mass and the width to be determined experimentally. The results are shown in Fig. 2 and also in Table I.

Figure 2: The same as in Fig. 1 but with a mass cut $M\left(K_{S} K^{ \pm}\right)<1.04 \mathrm{GeV}$. The two solid curves in the upper part of the histogram describe Breit-Wigner fits over a smooth background (see text). The lower histogram and the solid curve give the same fits with the background subtracted and amplified by a factor of two.

Table I. Fitted parameters and numbers of events

Mass (MeV)	Width (MeV)	Events
1274 ± 4	29 ± 12	345 ± 88 (stat) ± 69 (sys)
1426 ± 4	51 ± 14	790 ± 119 (stat) ± 110 (sys)

The main sources of systematic errors come from the various cuts and selection criteria applied for the V^{0} reconstruction plus the charged K identification - on the one handand the conditions of the mass-fit procedure - on the other. To estimate the first type of
error, we have compared the $K_{S} K^{ \pm}$mass distributions of the simulated sample with the real data. Normalized to the same number of events, both distributions agree within 7%, in the low $K_{S} K^{ \pm}$mass region.

The $f_{1}(1285)$ and $f_{1}(1420)$ signals show up over a large background ($\sim 80 \%$). Variations of the background shape and amplitude thus induce sizable fluctuations of the fitted numbers of signal events, especially in the $f_{1}(1420)$ mass region. To quantify this effect, we have performed a series of fits, varying the mass range of the fit, thereby allowing the background level to fluctuate. In this way we estimate the fit uncertainty to be 15% for the $f_{1}(1285)$ and 14% for the $f_{1}(1420)$. The systematic errors have been added quadratically and are shown in Table 1. It should be emphasized that the masses and the widths quoted in the table are not intended to be new experimental measurements; rather, they are merely given as an indication that our peaks are consistent with the known parameters. An in-depth analysis of such a measurement must include a relativistic Breit-Wigner form with a mass-dependent partial width which includes orbital angular-momentum barrier factors. In addition, one must consider the possibility that there can be more than one resonance of different spin-parity in each mass peak. Given the high level of background in our data sample, such an analysis-we believe - is not warranted at this time.

4 Partial-wave Analysis

There exists a long list of 3-body partial-wave analyses; the reader may consult PDG[3] for earlier references, for example, on $a_{1}(1260), a_{2}(1320), K_{1}(1270 / 1400)$ or $K_{2}(1770)$. For the first time, we apply the same technique to a study of the $(K \bar{K} \pi)^{0}$ system from the inclusive decay of the Z at LEP.

A short introductory remark may be in order, for the general principles involved in a spin-parity analysis of the system composed of three pseudoscalars. The description of such a system requires five variables, which may be chosen to be the three Euler angles describing the orientation of the 3 -body system in its suitably-chosen rest frame and two effective masses describing the decay Dalitz plot. We have chosen to employ the so-called Dalitz plot analysis, integrating over the three Euler angles. This entails an essential simplification in the number of parameters required in the analysis, as the decay amplitudes involving the D-functions defined over the three Euler angles and their appropriate decay-coupling constants, are orthogonal for different spins and parities[10]. The actual fitting of the data is done by using the maximum-likelihood method, in which the normalization integrals are evaluated with the accepted Monte Carlo events[11], thus taking into account the finite acceptance of the detector and the event selection.

The background under the two f_{1} is very large, some $\sim 80 \%$. It is assumed that this represents essentially different processes with, for example, different overall multiplicities - so that the background does not interfere with the signals. We assume further that the background itself is a non-interfering superposition of a flat distribution (on the Dalitz plot) and the partial waves $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{++}\right) a_{0}(980) \pi$, $0^{+}\left(1^{++}\right)\left(K^{*}(892) \bar{K}+\right.$ c.c. $)$ and $0^{-}\left(1^{+-}\right)\left(K^{*}(892) \bar{K}+\right.$ c.c. $)$. We have verified that these amplitudes give a good description of the three background regions for $M(K \bar{K} \pi)$ in $1.22 \rightarrow 1.26,1.30 \rightarrow 1.38$ and $1.48 \rightarrow 1.56 \mathrm{GeV}$, respectively.

The signal regions, for $M(K \bar{K} \pi)$ in $1.26 \rightarrow 1.30$ and $1.38 \rightarrow 1.48 \mathrm{GeV}$, have been fitted with a non-interfering superposition of the partial waves $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{++}\right), 0^{+}\left(1^{+-}\right)$
and $0^{-}\left(0^{-+}\right)$, where the decay channels $a_{0}(980) \pi$ and $K^{*}(892) \bar{K}+c . c$. are allowed to interfere within a given $J^{P C}$. All other possible partial waves have been found to be negligible in the signal regions. Because of a lack of phase space, the two isobars $a_{0}(980)$ and $K^{*}(892)$ cannot be distinguished for $M(K \bar{K} \pi)$ below 1.30 GeV , so we have kept the $a_{0}(980) \pi$ decay mode only. The fit results can be summarized as follows: (1) the maximum likelihood is found to be the same for $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{++}\right) a_{0}(980) \pi$ and for $0^{-}\left(0^{-+}\right) a_{0}(980) \pi$, i.e. the $1.28-\mathrm{GeV}$ region is equally likely to be the $f_{1}(1285)$ or the $\eta(1295)$; (2) in the $1.4-\mathrm{GeV}$ region, the maximum likelihood is marginally better (by about 3 for $\Delta \ln \mathcal{L}$) for $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{++}\right) f_{1}(1420)$ than $I^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right) \eta(1440)$; the $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{+-}\right) h_{1}(1380)$ is excluded in this analysis (by about 13 for $\Delta \ln \mathcal{L}$).

The results of the partial-wave analysis are summarized in Fig. 3. It should be emphasized that both the mass-dependent (per 20 MeV) and the mass-independent global fits give compatible results. The masses, the widths and the numbers of events found in the mass-independent global fit, shown as solid curves in Fig. 3, are statistically consistent with those given in Table I, even though the overall background shape - see the dotted curve just below the histogram with error bars-exhibit a slight dip around 1.4 GeV which is not present in Fig. 2.

Figure 3: $M\left(K_{S} K^{ \pm} \pi^{\mp}\right)$ distributions per 20 MeV with a breakdown into the partial-waves for the signals and the background. The signals consist of $1^{++} a_{0}(980) \pi$ for the first peak and $1^{++} K^{*}(892) \bar{K}$ for the second peak. The background consists of non-interfering superposition of isotropic distribution (1), $1^{++} a_{0}(980) \pi(2), 1^{++} K^{*}(892) \bar{K}(3)$ and $1^{+-} K^{*}(892) \bar{K}$ (4).

5 Discussion and Conclusions

We have measured the production rate $\langle n\rangle$ per hadronic Z decay for $f_{1}(1285) / \eta(1295)$ and $f_{1}(1420)$. We assume for this study that both have spin 1 . The results are

$$
\begin{align*}
& \langle n\rangle=0.132 \pm 0.034 \quad \text { for } \quad f_{1}(1285) \\
& \langle n\rangle=0.0512 \pm 0.0078 \quad \text { for } \quad f_{1}(1420) \tag{4}
\end{align*}
$$

taking a $K \bar{K} \pi$ branching ratio of $(9.0 \pm 0.4) \%$ for the $f_{1}(1285)$ and 100% for the $f_{1}(1420)[3]$. The production rate per spin state [i.e. divided by $(2 J+1)$] has been studied in Ref. [2]; in Fig. 4 is given all the available data for those mesons with a 'triplet' $q \bar{q}$ structure, i.e. $S=1$ in the spectroscopic notation ${ }^{2 S+1} L_{J}$. To this figure we have added our two mesons for comparison. It is seen that both $f_{1}(1285)$ and $f_{1}(1420)$ come very close to the line corresponding to other mesons whose constituents are thought to be of the type $n \bar{n}$. This is suggestive of two salient facts: (1)the first peak at 1.28 GeV is very likely to be the $f_{1}(1285)$; (2) both $f_{1}(1285)$ and $f_{1}(1420)$ have little $s \bar{s}$ content. Indeed, the two states which are thought to be pure $s \bar{s}$ mesons, the ϕ and the $f_{2}^{\prime}(1525)$, are down by a factor $\gamma^{k} \approx 1 / 4(\gamma=0.50 \pm 0.02$ and $k=2)$, as shown in Fig. 4. This is highly unlikely given the production rate (4).

We have studied the inclusive production of $f_{1}(1285) / \eta(1295)$ and $f_{1}(1420)$ in Z decays at LEP I. The measured masses and widths are 1274 ± 4 and $29 \pm 12 \mathrm{MeV}$ for the first peak and 1426 ± 4 and $51 \pm 14 \mathrm{MeV}$ for the second one. For the first time, a partialwave analysis has been carried out on the $(K \bar{K} \pi)^{0}$ system. The results show that the first peak is equally likely to be the $f_{1}(1285)$ or the $\eta(1295)$, while the second peak is consistent with the $f_{1}(1420)$. However, the hadronic production rate of these two states suggests that their quantum numbers are very probably $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{++}\right)$and that their quark constituents are mainly of the type $n \bar{n}$, where $n=\{u, d\}$. In a previous study of the production rate[2] for the $S=1$ mesons-which included ${ }^{3} S_{1},{ }^{3} P_{0}$ and ${ }^{3} P_{2}$-an intriguing pattern has been found; it appears that the mesons of the type ${ }^{3} P_{1}$, assuming that both $f_{1}(1285)$ and $f_{1}(1420)$ belong to the category, follow the same pattern. Finally, we conclude that the mesons $\eta(1295), \eta(1440)$ and $h_{1}(1380)$ are less likely to be produced in the inclusive Z decays compared to $f_{1}(1285)$ and $f_{1}(1420)$.

Figure 4: Total production rate per spin state and isospin for scalar, vector and tensor mesons as a function of the mass (open symbols). The two solid circles correspond to the $f_{1}(1285)$ and the $f_{1}(1420)$.

Acknowledgements

S.-U. Chung is grateful for the warm hospitality extended to him by CERN staff during his sabbatical year in the EP Division.

References

[1] P. Abreu et al., DELPHI Collab., Phys. Lett. B449 (1999) 364.
[2] V. Uvarov, Phys.Lett. B511 (2001) 136; 'Determination of the strangeness content of light-flavor isoscalars from its production rates in hadronic Z decays measured at LEP,' (arXiv:hep-ph/0105185) May 2001.
[3] Review of Particle Physics, Eur. Phys. J. C15, (2000) 1.
[4] P. Aarnio et al., DELPHI Collab., Nucl. Inst. Meth. A303 (1991) 233.
[5] P. Abreu et al., DELPHI Collab., Nucl. Inst. Meth. A378 (1996) 57.
[6] T. Sjöstrand, Comput. Phys. Comm. 82 (1994) 74.
[7] P. Abreu et al., DELPHI Collab., Z.Phys. C 73 (1996) 11.
[8] P.Aarnio et al., DELPHI Collab., Nucl. Instr. Meth. A 378 (1996) 57.
[9] P. Abreu et al., DELPHI Collab., Z.Phys. C 65 (1995) 587.
[10] See, for example, S. U. Chung, 'Spin Formalisms,' CERN preprint 71-8 (1971).
[11] S. U. Chung et al., Phys. Rev. D60 (1999) 092001.
[12] See, for example, S. U. Chung, 'Analysis of $K \bar{K} \pi$ systems (Version I),' BNL-QGS-98-901 (1998), posted on the website: http://cern.ch/suchung/.

