2,372 research outputs found

    Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance

    Get PDF
    Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua are shown to be functionals of the Beutler- Fano formulas using appropriate dimensionless energy units and line profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With the help of new parameters, an analogy with the spin model is pursued for the S matrix and time delay matrix. The time delay matrix is shown to comprise three terms, one due to resonance, one due to a avoided crossing interaction, and one due to a frame change. It is found that the squared sum of time delays due to the avoided crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe

    Collider signals from slow decays in supersymmetric models with an intermediate-scale solution to the mu problem

    Get PDF
    The problem of the origin of the mu parameter in the Minimal Supersymmetric Standard Model can be solved by introducing singlet supermultiplets with non-renormalizable couplings to the ordinary Higgs supermultiplets. The Peccei-Quinn symmetry is broken at a scale which is the geometric mean between the weak scale and the Planck scale, yielding a mu term of the right order of magnitude and an invisible axion. These models also predict one or more singlet fermions which have electroweak-scale masses and suppressed couplings to MSSM states. I consider the case that such a singlet fermion, containing the axino as an admixture, is the lightest supersymmetric particle. I work out the relevant couplings in several of the simplest models of this type, and compute the partial decay widths of the next-to-lightest supersymmetric particle involving leptons or jets. Although these decays will have an average proper decay length which is most likely much larger than a typical collider detector, they can occasionally occur within the detector, providing a striking signal. With a large sample of supersymmetric events, there will be an opportunity to observe these decays, and so gain direct information about physics at very high energy scales.Comment: 24 pages, LaTeX, 4 figure

    Occlusal reduction of unilateral molars influences change of stress-related hormones in rats

    Get PDF
    In order to investigate the change of stress-related hormones by dental occlusal reduction, we ground  molars in Sprague-Dawley (SD) rats and evaluated the effect on hormone levels. Thirteen and 18 weeks  after occlusal reduction, cortisol concentration was increased 2.75 and 2.17 fold respectively, whereas corticosterone  concentration was slightly elevated by 31.2% and 13.5%, respectively. Body weight was slightly  decreased, but feed and water intake, and blood chemistry were the same in the experimental group as  in the control group. Our results suggest that unilateral molar occlusal reduction may influence cortisol and  corticosterone levels and the endocrine system, leading to hormone imbalance through the body.

    Fluctuations of the Retarded Van der Waals Force

    Get PDF
    The retarded Van der Waals force between a polarizable particle and a perfectly conducting plate is re-examined. The expression for this force given by Casimir and Polder represents a mean force, but there are large fluctuations around this mean value on short time scales which are of the same order of magnitude as the mean force itself. However, these fluctuations occur on time scales which are typically of the order of the light travel time between the atom and the plate. As a consequence, they will not be observed in an experiment which measures the force averaged over a much longer time. In the large time limit, the magnitude of the mean squared velocity of a test particle due to this fluctuating Van der Waals force approaches a constant, and is similar to a Brownian motion of a test particle in an thermal bath with an effective temperature. However the fluctuations are not isotropic in this case, and the shift in the mean square velocity components can even be negative. We interpret this negative shift to correspond to a reduction in the velocity spread of a wavepacket. The force fluctuations discussed in this paper are special case of the more general problem of stress tensor fluctuations. These are of interest in a variety of areas fo physics, including gravity theory. Thus the effects of Van der Waals force fluctuations serve as a useful model for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure

    A gauge-mediated supersymmetry breaking model with an extra singlet Higgs field

    Get PDF
    We study in some detail the next-to-minimal supersymmetric standard model with gauge mediation of supersymmetry breaking. We find that it is feasible to spontaneously generate values of the Higgs mass parameters ÎĽ\mu and BÎĽB_\mu consistent with radiative electroweak symmetry breaking. The model has a phenomenologically viable particle spectrum. Messenger sneutrinos with mass in the range 6 to 25 TeV can serve as cold dark matter. It is also possible to evade the cosmological domain wall problem in this scenario.Comment: revised version to appear in PR

    Health monitoring in composite structures using piezoceramic sensors and fiber optic sensors

    Get PDF
    Abstract: Health monitoring is a major concern not only in the design and manufacturing but also in service stages for composite laminated structures. Excessive loads or low velocity impact can cause matrix cracks and delaminations that may severely degrade the load carrying capability of the composite laminated structures. To develop the health monitoring techniques providing on-line diagnostics of smart composite structures can be helpful in keeping the composite structures sound during their service. In this presentation, we discuss the signal processing techniques and some applications for health monitoring of composite structures using piezoceramic sensors and fiber optic sensors

    Nonlinear Magneto-Optics of Fe Monolayers from first principles: Structural dependence and spin-orbit coupling strength

    Full text link
    We calculate the nonlinear magneto-optical response of free-standing fcc (001), (110) and (111) oriented Fe monolayers. The bandstructures are determined from first principles using a full-potential LAPW method with the additional implementation of spin-orbit coupling. The variation of the spin-orbit coupling strength and the nonlinear magneto-optical spectra upon layer orientation are investigated. We find characteristic differences which indicate an enhanced sensitivity of nonlinear magneto-optics to surface orientation and variation of the in-plane lattice constants. In particular the crossover from onedimensional stripe structures to twodimensional films of (111) layers exhibits a clean signature in the nonlinear Kerr-spectra and demonstrates the versatility of nonlinear magneto-optics as a tool for in situ thin-film analysis.Comment: 28 pages, RevTeX, psfig, submitted to PR

    Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model

    Full text link
    We calculate the relic abundance of thermally produced neutralino cold dark matter in the general 19 parameter supergravity (SUGRA-19) model. A scan over GUT scale parameters reveals that models with a bino-like neutralino typically give rise to a dark matter density \Omega_{\tz_1}h^2\sim 1-1000, i.e. between 1 and 4 orders of magnitude higher than the measured value. Models with higgsino or wino cold dark matter can yield the correct relic density, but mainly for neutralino masses around 700-1300 GeV. Models with mixed bino-wino or bino-higgsino CDM, or models with dominant co-annihilation or A-resonance annihilation can yield the correct abundance, but such cases are extremely hard to generate using a general scan over GUT scale parameters; this is indicative of high fine-tuning of the relic abundance in these cases. Requiring that m_{\tz_1}\alt 500 GeV (as a rough naturalness requirement) gives rise to a minimal probably dip in parameter space at the measured CDM abundance. For comparison, we also scan over mSUGRA space with four free parameters. Finally, we investigate the Peccei-Quinn augmented MSSM with mixed axion/axino cold dark matter. In this case, the relic abundance agrees more naturally with the measured value. In light of our cumulative results, we conclude that future axion searches should probe much more broadly in axion mass, and deeper into the axion coupling.Comment: 23 pages including 17 .eps figure

    Neutrino Anomalies in Gauge Mediated Model with Trilinear R violation

    Get PDF
    The structure of neutrino masses and mixing resulting from trilinear RR violating interactions is studied in the presence of the gauge mediated supersymmetry breaking. Neutrino masses arise in this model at tree level through the RG-induced vacuum expectation values of the sneutrinos and also through direct contribution at 1-loop. The relative importance of these contributions is determined by the values of the strong and weak coupling constants. In case of purely λ′\lambda' couplings, the tree contribution dominates over the 1-loop diagram. In this case, one simultaneously obtains atmospheric neutrino oscillations and quasi-vacuum oscillations of the solar neutrinos if all the \l' couplings are assumed to be of similar magnitudes. If R parity violation arises from the trilinear \l couplings, then the loop induced contribution dominates over the tree level. One cannot simultaneously explain the solar and atmospheric deficit in this case if all the \l couplings are of similar magnitude. This however becomes possible with hierarchical \l and we give a specific example of this.Comment: 26 pages Latex, 2 figures, certain sections rewritten, improved discussion about derivations added. To appear in Physical Review
    • …
    corecore