49,216 research outputs found
Spontaneous Formation of Stable Capillary Bridges for Firming Compact Colloidal Microstructures in Phase Separating Liquids: A Computational Study
Computer modeling and simulations are performed to investigate capillary
bridges spontaneously formed between closely packed colloidal particles in
phase separating liquids. The simulations reveal a self-stabilization mechanism
that operates through diffusive equilibrium of two-phase liquid morphologies.
Such mechanism renders desired microstructural stability and uniformity to the
capillary bridges that are spontaneously formed during liquid solution phase
separation. This self-stabilization behavior is in contrast to conventional
coarsening processes during phase separation. The volume fraction limit of the
separated liquid phases as well as the adhesion strength and thermodynamic
stability of the capillary bridges are discussed. Capillary bridge formations
in various compact colloid assemblies are considered. The study sheds light on
a promising route to in-situ (in-liquid) firming of fragile colloidal crystals
and other compact colloidal microstructures via capillary bridges
Quantum Phase Transition in the Sub-Ohmic Spin-Boson Model: Extended Coherent-state Approach
We propose a general extended coherent state approach to the qubit (or
fermion) and multi-mode boson coupling systems. The application to the
spin-boson model with the discretization of a bosonic bath with arbitrary
continuous spectral density is described in detail, and very accurate solutions
can be obtained. The quantum phase transition in the nontrivial sub-Ohmic case
can be located by the fidelity and the order-parameter critical exponents for
the bath exponents can be correctly given by the fidelity
susceptibility, demonstrating the strength of the approach.Comment: 4 pages, 3 figure
Smooth backfitting in generalized additive models
Generalized additive models have been popular among statisticians and data
analysts in multivariate nonparametric regression with non-Gaussian responses
including binary and count data. In this paper, a new likelihood approach for
fitting generalized additive models is proposed. It aims to maximize a smoothed
likelihood. The additive functions are estimated by solving a system of
nonlinear integral equations. An iterative algorithm based on smooth
backfitting is developed from the Newton--Kantorovich theorem. Asymptotic
properties of the estimator and convergence of the algorithm are discussed. It
is shown that our proposal based on local linear fit achieves the same bias and
variance as the oracle estimator that uses knowledge of the other components.
Numerical comparison with the recently proposed two-stage estimator [Ann.
Statist. 32 (2004) 2412--2443] is also made.Comment: Published in at http://dx.doi.org/10.1214/009053607000000596 the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
An alternative to quintessence
We consider a FRW cosmological model with an exotic fluid known as Chaplygin
gas. We show that the resulting evolution of the universe is not in
disagreement with the current observation of cosmic acceleration. The model
predict an increasing value for the effective cosmological constant.Comment: 8 pages, latex. References and a new section adde
Semi-parametric regression: Efficiency gains from modeling the nonparametric part
It is widely admitted that structured nonparametric modeling that circumvents
the curse of dimensionality is important in nonparametric estimation. In this
paper we show that the same holds for semi-parametric estimation. We argue that
estimation of the parametric component of a semi-parametric model can be
improved essentially when more structure is put into the nonparametric part of
the model. We illustrate this for the partially linear model, and investigate
efficiency gains when the nonparametric part of the model has an additive
structure. We present the semi-parametric Fisher information bound for
estimating the parametric part of the partially linear additive model and
provide semi-parametric efficient estimators for which we use a smooth
backfitting technique to deal with the additive nonparametric part. We also
present the finite sample performances of the proposed estimators and analyze
Boston housing data as an illustration.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ296 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
- …