49,216 research outputs found

    Supersingular Kottwitz-Rapoport strata and Deligne-Lusztig varieties

    No full text

    Spontaneous Formation of Stable Capillary Bridges for Firming Compact Colloidal Microstructures in Phase Separating Liquids: A Computational Study

    Full text link
    Computer modeling and simulations are performed to investigate capillary bridges spontaneously formed between closely packed colloidal particles in phase separating liquids. The simulations reveal a self-stabilization mechanism that operates through diffusive equilibrium of two-phase liquid morphologies. Such mechanism renders desired microstructural stability and uniformity to the capillary bridges that are spontaneously formed during liquid solution phase separation. This self-stabilization behavior is in contrast to conventional coarsening processes during phase separation. The volume fraction limit of the separated liquid phases as well as the adhesion strength and thermodynamic stability of the capillary bridges are discussed. Capillary bridge formations in various compact colloid assemblies are considered. The study sheds light on a promising route to in-situ (in-liquid) firming of fragile colloidal crystals and other compact colloidal microstructures via capillary bridges

    Quantum Phase Transition in the Sub-Ohmic Spin-Boson Model: Extended Coherent-state Approach

    Full text link
    We propose a general extended coherent state approach to the qubit (or fermion) and multi-mode boson coupling systems. The application to the spin-boson model with the discretization of a bosonic bath with arbitrary continuous spectral density is described in detail, and very accurate solutions can be obtained. The quantum phase transition in the nontrivial sub-Ohmic case can be located by the fidelity and the order-parameter critical exponents for the bath exponents s<1/2s<1/2 can be correctly given by the fidelity susceptibility, demonstrating the strength of the approach.Comment: 4 pages, 3 figure

    Smooth backfitting in generalized additive models

    Full text link
    Generalized additive models have been popular among statisticians and data analysts in multivariate nonparametric regression with non-Gaussian responses including binary and count data. In this paper, a new likelihood approach for fitting generalized additive models is proposed. It aims to maximize a smoothed likelihood. The additive functions are estimated by solving a system of nonlinear integral equations. An iterative algorithm based on smooth backfitting is developed from the Newton--Kantorovich theorem. Asymptotic properties of the estimator and convergence of the algorithm are discussed. It is shown that our proposal based on local linear fit achieves the same bias and variance as the oracle estimator that uses knowledge of the other components. Numerical comparison with the recently proposed two-stage estimator [Ann. Statist. 32 (2004) 2412--2443] is also made.Comment: Published in at http://dx.doi.org/10.1214/009053607000000596 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An alternative to quintessence

    Get PDF
    We consider a FRW cosmological model with an exotic fluid known as Chaplygin gas. We show that the resulting evolution of the universe is not in disagreement with the current observation of cosmic acceleration. The model predict an increasing value for the effective cosmological constant.Comment: 8 pages, latex. References and a new section adde

    Semi-parametric regression: Efficiency gains from modeling the nonparametric part

    Full text link
    It is widely admitted that structured nonparametric modeling that circumvents the curse of dimensionality is important in nonparametric estimation. In this paper we show that the same holds for semi-parametric estimation. We argue that estimation of the parametric component of a semi-parametric model can be improved essentially when more structure is put into the nonparametric part of the model. We illustrate this for the partially linear model, and investigate efficiency gains when the nonparametric part of the model has an additive structure. We present the semi-parametric Fisher information bound for estimating the parametric part of the partially linear additive model and provide semi-parametric efficient estimators for which we use a smooth backfitting technique to deal with the additive nonparametric part. We also present the finite sample performances of the proposed estimators and analyze Boston housing data as an illustration.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ296 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    • …
    corecore