24 research outputs found

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    High aspect ratio constructive nanolithography with a photo-fimerizable molecule

    No full text
    A major challenge in constructive nanolithography is the preservation of the lateral resolution of a monolayer-thick template pattern while amplifying it to a structure with a thickness above 10 nm. So far, the most successful approach to achieve this is surface-initiated polymerization (SIP) from e-beam structured monolayer templates in a multistep process. However, spreading of the polymer on the substrate leads to a rapid line-widening. Therefore, structures with lateral resolutions well below 100 nm and thicknesses above 10 nm (aspect ratio: 0.1) were not reported yet. Our approach of photoinduced, constructive, reversible nanolithography, is based on nanografting within a coumarin-derivative thiol (CDT) solution using the tip of an atomic force microscope (AFM). By photodimerization and the formation of disulfide bonds, the CDT polymerizes in a single-step process. We demonstrate the highest lateral resolution in constructive nanolithography at thicknesses above 10 nm (40 nm lateral resolution at 12 nm thickness, aspect ratio: 0.3)

    Teilprojektübergreifende Zusammenarbeit bei der Entwicklung von Anpassungsmaßnahmen der Landwirtschaft an sommerliche Trockenheit

    Get PDF
    Die projizierte Klimaänderung für die Metropolregion Hamburg (MRH) führt vermehrt zu sommerlichen Trockenperioden. Besonders im Südosten der Region wird dadurch die Wasserverfügbarkeit als limitierender Produktionsfaktor in der Landwirtschaft weiter begrenzt. Eine Abnahme der Grundwasserneubildung und zugleich zunehmender Wasserbedarf der Pflanzen erfordert eine Anpassung der Bewässerungsmethoden und Landbewirtschaftung. Dazu untersuchen Projekte innerhalb des KLIMZUG-NORD Themenfelds T3 „Zukunftsfähige Kulturlandschaften“ die Auswirkungen des Klimawandels auf die Verfügbarkeit und Qualität des Wassers und entwickeln entsprechende Anpassungsmaßnahmen der Landwirtschaft bei gleichzeitiger Berücksichtigung der Ansprüche des Naturschutzes. Es wurden Kooperationen zwischen Akteuren aus Forschung, Planung, Wasser- und Landwirtschaft gebildet und vertieft; im Folgenden sind Ausschnitte der interdisziplinären Zusammenarbeit in den Modellregionen Lüneburger Heide und Biosphärenreservat Niedersächsische Elbtalaue präsentiert

    Molecular Mechanisms of Electron-Induced Cross-Linking in Aromatic SAMs

    No full text
    Turchanin A, Käfer D, El-Desawy M, Wöll C, Witte G, Gölzhäuser A. Molecular Mechanisms of Electron-Induced Cross-Linking in Aromatic SAMs. LANGMUIR. 2009;25(13):7342-7352.When aromatic self-assembled monolayers (SAMs) are electron-irradiated, intermolecular cross-links are formed and the SAMs transform into carbon nanosheets with molecular thickness. These nanosheets have a very high mechanical stability and can withstand temperatures above 1000 K. In this report, we investigate the electron induced cross-linking of 1,1'-biphenyl-4-thiol (BPT) SAMs on gold by combining X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (NEXAFS), thermal desorption spectroscopy (TDS), and UV photoelectron spectroscopy (UPS). The experimental data were acquired as a function of electron dose and temperature and compared with quantum chemical calculations. Details of the intermolecular cross-linking, the microstructure of cross-linked films, and their structural transformations upon heating were obtained to derive a view of the mechanisms involved. Our analysis shows that room-temperature electron irradiation causes a lateral cross-linking via the formation of C-C linked phenyl species as well as a new 2 sulfur species. The thermal stability of the BPT films increases with the electron dose and saturates at similar to 50 mC/cm(2). Nevertheless, nonlinked fragments in the thermal desorption spectra indicate an incomplete cross-linking even at high doses, which can be attributed to steric reasons and quenching due to the reduced band gap of partially linked molecules. At temperatures above 800 K, all sulfur species are thermally desorbed, while the remaining film reveals an onset of carbonization
    corecore