26,219 research outputs found

    Nonequilibrium steady states in fluids of platelike colloidal particles

    Full text link
    Nonequilibrium steady states in an open system connecting two reservoirs of platelike colloidal particles are investigated by means of a recently proposed phenomenological dynamic density functional theory [M. Bier and R. van Roij, Phys. Rev. E 76, 021405 (2007)]. The platelike colloidal particles are approximated within the Zwanzig model of restricted orientations, which exhibits an isotropic-nematic bulk phase transition. Inhomogeneities of the local chemical potential generate a diffusion current which relaxes to a nonvanishing value if the two reservoirs coupled to the system sustain different chemical potentials. The relaxation process of initial states towards the steady state turns out to comprise two regimes: a smoothening of initial steplike structures followed by an ultimate relaxation of the slowest diffusive mode. The position of a nonequilibrium interface and the particle current of steady states depend nontrivially on the structure of the reservoirs due to the coupling between translational and orientational degrees of freedom of the fluid

    An exactly solvable dissipative transport model

    Full text link
    We introduce a class of one-dimensional lattice models in which a quantity, that may be thought of as an energy, is either transported from one site to a neighbouring one, or locally dissipated. Transport is controlled by a continuous bias parameter q, which allows us to study symmetric as well as asymmetric cases. We derive sufficient conditions for the factorization of the N-body stationary distribution and give an explicit solution for the latter, before briefly discussing physically relevant situations.Comment: 7 pages, 1 figure, submitted to J. Phys.

    Stresses in lipid membranes

    Full text link
    The stresses in a closed lipid membrane described by the Helfrich hamiltonian, quadratic in the extrinsic curvature, are identified using Noether's theorem. Three equations describe the conservation of the stress tensor: the normal projection is identified as the shape equation describing equilibrium configurations; the tangential projections are consistency conditions on the stresses which capture the fluid character of such membranes. The corresponding torque tensor is also identified. The use of the stress tensor as a basis for perturbation theory is discussed. The conservation laws are cast in terms of the forces and torques on closed curves. As an application, the first integral of the shape equation for axially symmetric configurations is derived by examining the forces which are balanced along circles of constant latitude.Comment: 16 pages, introduction rewritten, other minor changes, new references added, version to appear in Journal of Physics

    Relaxation dynamics in fluids of platelike colloidal particles

    Full text link
    The relaxation dynamics of a model fluid of platelike colloidal particles is investigated by means of a phenomenological dynamic density functional theory. The model fluid approximates the particles within the Zwanzig model of restricted orientations. The driving force for time-dependence is expressed completely by gradients of the local chemical potential which in turn is derived from a density functional -- hydrodynamic interactions are not taken into account. These approximations are expected to lead to qualitatively reliable results for low densities as those within the isotropic-nematic two-phase region. The formalism is applied to model an initially spatially homogeneous stable or metastable isotropic fluid which is perturbed by switching a two-dimensional array of Gaussian laser beams. Switching on the laser beams leads to an accumulation of colloidal particles in the beam centers. If the initial chemical potential and the laser power are large enough a preferred orientation of particles occurs breaking the symmetry of the laser potential. After switching off the laser beams again the system can follow different relaxation paths: It either relaxes back to the homogeneous isotropic state or it forms an approximately elliptical high-density core which is elongated perpendicular to the dominating orientation in order to minimize the surface free energy. For large supersaturations of the initial isotropic fluid the high-density cores of neighboring laser beams of the two-dimensional array merge into complex superstructures.Comment: low-resolution figures due to file size restrictions, revised versio

    Geometry of lipid vesicle adhesion

    Full text link
    The adhesion of a lipid membrane vesicle to a fixed substrate is examined from a geometrical point of view. This vesicle is described by the Helfrich hamiltonian quadratic in mean curvature; it interacts by contact with the substrate, with an interaction energy proportional to the area of contact. We identify the constraints on the geometry at the boundary of the shared surface. The result is interpreted in terms of the balance of the force normal to this boundary. No assumptions are made either on the symmetry of the vesicle or on that of the substrate. The strong bonding limit as well as the effect of curvature asymmetry on the boundary are discussed.Comment: 7 pages, some major changes in sections III and IV, version published in Physical Review

    Constrained Monte Carlo Method and Calculation of the Temperature Dependence of Magnetic Anisotropy

    Full text link
    We introduce a constrained Monte Carlo method which allows us to traverse the phase space of a classical spin system while fixing the magnetization direction. Subsequently we show the method's capability to model the temperature dependence of magnetic anisotropy, and for bulk uniaxial and cubic anisotropies we recover the low-temperature Callen-Callen power laws in M. We also calculate the temperature scaling of the 2-ion anisotropy in L10 FePt, and recover the experimentally observed M^2.1 scaling. The method is newly applied to evaluate the temperature dependent effective anisotropy in the presence of the N'eel surface anisotropy in thin films with different easy axis configurations. In systems having different surface and bulk easy axes, we show the capability to model the temperature-induced reorientation transition. The intrinsic surface anisotropy is found to follow a linear temperature behavior in a large range of temperatures

    Periodically driven stochastic un- and refolding transitions of biopolymers

    Full text link
    Mechanical single molecule experiments probe the energy profile of biomolecules. We show that in the case of a profile with two minima (like folded/unfolded) periodic driving leads to a stochastic resonance-like phenomenon. We demonstrate that the analysis of such data can be used to extract four basic parameters of such a transition and discuss the statistical requirements of the data acquisition. As advantages of the proposed scheme, a polymeric linker is explicitly included and thermal fluctuations within each well need not to be resolved.Comment: 7 pages, 5 figures, submitted to EP

    Hydrodynamic lift on bound vesicles

    Full text link
    Bound vesicles subject to lateral forces such as arising from shear flow are investigated theoretically by combining a lubrication analysis of the bound part with a scaling approach to the global motion. A minor inclination of the bound part leads to significant lift due to the additive effects of lateral and tank-treading motions. With increasing shear rate, the vesicle unbinds from the substrate at a critical value. Estimates are in agreement with recent experimental data.Comment: 9 pages, one figur

    Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids

    Get PDF
    We determine the speed of a crystallisation (or more generally, a solidification) front as it advances into the uniform liquid phase after the system has been quenched into the crystalline region of the phase diagram. We calculate the front speed by assuming a dynamical density functional theory model for the system and applying a marginal stability criterion. Our results also apply to phase field crystal (PFC) models of solidification. As the solidification front advances into the unstable liquid phase, the density profile behind the advancing front develops density modulations and the wavelength of these modulations is a dynamically chosen quantity. For shallow quenches, the selected wavelength is precisely that of the crystalline phase and so well-ordered crystalline states are formed. However, when the system is deeply quenched, we find that this wavelength can be quite different from that of the crystal, so that the solidification front naturally generates disorder in the system. Significant rearrangement and ageing must subsequently occur for the system to form the regular well-ordered crystal that corresponds to the free energy minimum. Additional disorder is introduced whenever a front develops from random initial conditions. We illustrate these findings with results obtained from the PFC.Comment: 14 pages, 7 figure

    Probing the mechanical unzipping of DNA

    Full text link
    A study of the micromechanical unzipping of DNA in the framework of the Peyrard-Bishop-Dauxois model is presented. We introduce a Monte Carlo technique that allows accurate determination of the dependence of the unzipping forces on unzipping speed and temperature. Our findings agree quantitatively with experimental results for homogeneous DNA, and for λ\lambda-phage DNA we reproduce the recently obtained experimental force-temperature phase diagram. Finally, we argue that there may be fundamental differences between {\em in vivo} and {\em in vitro} DNA unzipping
    • …
    corecore