5,072 research outputs found
Quantum two-photon algebra from non-standard U_z(sl(2,R)) and a discrete time Schr\"odinger equation
The non-standard quantum deformation of the (trivially) extended sl(2,R)
algebra is used to construct a new quantum deformation of the two-photon
algebra h_6 and its associated quantum universal R-matrix. A deformed one-boson
representation for this algebra is deduced and applied to construct a first
order deformation of the differential equation that generates the two-photon
algebra eigenstates in Quantum Optics. On the other hand, the isomorphism
between h_6 and the (1+1) Schr\"odinger algebra leads to a new quantum
deformation for the latter for which a differential-difference realization is
presented. From it, a time discretization of the heat-Schr\"odinger equation is
obtained and the quantum Schr\"odinger generators are shown to be symmetry
operators.Comment: 12 pages, LaTe
Rotavirus.
Rotavirus, the most common diarrheal pathogen in children worldwide, causes approximately one third of diarrhea-associated hospitalizations and 800,000 deaths per year. Because natural infection reduces the incidence and severity of subsequent episodes, rotavirus diarrhea might be controlled through vaccination. Serotypespecific immunity may play a role in protection from disease. Tetravalent rhesus-human reassortant rotavirus vaccine (RRV-TV) (which contains a rhesus rotavirus with serotype G3 specificity and reassortant rhesus-human rotaviruses with G1, G2, and G4 specificity) provides coverage against the four common serotypes of human rotavirus. In clinical trials in industrialized countries, RRV-TV conferred 49% to 68% protection against any rotavirus diarrhea and 61% to 100% protection against severe disease. This vaccine was licensed by the U.S. Food and Drug Administration on August 31, 1998, and should be cost-effective in reducing diarrheal diseases in industrialized countries. The vaccine's efficacy and cost-effectiveness in developing countries should be evaluated
Norovirus Infection and Disease in an Ecuadorian Birth Cohort: Association of Certain Norovirus Genotypes With Host FUT2 Secretor Status.
BACKGROUND: Although norovirus is the most common cause of gastroenteritis, there are few data on the community incidence of infection/disease or the patterns of acquired immunity or innate resistance to norovirus. METHODS: We followed a community-based birth cohort of 194 children in Ecuador with the aim to estimate (1) the incidence of norovirus gastroenteritis from birth to age 3 years, (2) the protective effect of norovirus infection against subsequent infection/disease, and (3) the association of infection and disease with FUT2 secretor status. RESULTS: Over the 3-year period, we detected a mean of 2.26 diarrheal episodes per child (range, 0-12 episodes). Norovirus was detected in 260 samples (18%) but was not found more frequently in diarrheal samples (79 of 438 [18%]), compared with diarrhea-free samples (181 of 1016 [18%]; P = .919). A total of 66% of children had at least 1 norovirus infection during the first 3 years of life, and 40% of children had 2 infections. Previous norovirus infections were not associated with the risk of subsequent infection. All genogroup II, genotype 4 (GII.4) infections were among secretor-positive children (P < .001), but higher rates of non-GII.4 infections were found in secretor-negative children (relative risk, 0.56; P = .029). CONCLUSIONS: GII.4 infections were uniquely detected in secretor-positive children, while non-GII.4 infections were more often found in secretor-negative children
Chemical characteristics and source apportionment of aerosols over Indian Ocean during INDOEX-1999
During INDOEX IFP-99, the samples of aerosols were collected onboard ORV Sagar Kanya over Indian Ocean along the cruise track, for chemical characterization and identification of dominating sources of aerosols. The concentrations of nss-SO4, nss-Ca, nss-Mg, NO3, K, NH4 and SO2 were observed to be significantly higher before ITCZ in northern hemisphere than across ITCZ in southern hemisphere. In this study, variation of concentrations of nss-SO4, nss-Ca and nss-K with respect to change in latitude, wind direction, wind speed and relative humidity have been highlighted. North of ITCZ, nss-SO4 varied from 2.20 to 18.31 μg/m3 and south of ITCZ from 0.50 to 2.79 μg/m3 while nss-Ca varied from 0.02 to 0.72 μg/m3 north of ITCZ and from 0.01 to 0.14 μg/m3 south of ITCZ. nss-K ranged 0.09-1.43 μg/m3 and 0.07-0.60 μg/m3 before ITCZ and across ITCZ respectively. nss-Ca and nss-SO4 were contributed mainly by NNW and ENE winds while nss-K was observed to be contributed mainly by SSW and ENE winds. Wind speed greater than 4.5 m/s negatively influenced the concentration of nss-Ca concentrations. Correlation coefficients of nss-SO4 with SO2 (r = 0.7) and RH (r = 0.5) suggested a significant contribution of nss-SO4 by aqueous phase oxidation of SO2. Using PCA, four major sources namely sea salt, biogenic combustion, secondary SO4 and crustal contribution were identified over Indian Ocean during INDOEX period
A Jordanian quantum two-photon/Schrodinger algebra
A non-standard quantum deformation of the two-photon algebra is
constructed, and its quantum universal R-matrix is given. Representations of
this new quantum algebra are studied on the Fock space and translated into
Fock-Bargmann realizations that provide a direct formalism for the definition
of deformed states of light. Finally, the isomorphism between and the
(1+1) Schr\"odinger algebra is used to introduce a new (non-standard) Hopf
algebra deformation of this latter symmetry algebra.Comment: 12 pages, LaTeX, misprints correcte
(1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups
All Lie bialgebra structures for the (1+1)-dimensional centrally extended
Schrodinger algebra are explicitly derived and proved to be of the coboundary
type. Therefore, since all of them come from a classical r-matrix, the complete
family of Schrodinger Poisson-Lie groups can be deduced by means of the
Sklyanin bracket. All possible embeddings of the harmonic oscillator, extended
Galilei and gl(2) Lie bialgebras within the Schrodinger classification are
studied. As an application, new quantum (Hopf algebra) deformations of the
Schrodinger algebra, including their corresponding quantum universal
R-matrices, are constructed.Comment: 25 pages, LaTeX. Possible applications in relation with integrable
systems are pointed; new references adde
Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence
Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection
conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta
(ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic
shear (strong guide field). Changing the simulation domain size, we find that
the ion response varies greatly. For reconnecting regions with scales
comparable to the ion Larmor radius, the ions do not respond to the
reconnection dynamics leading to ''electron-only'' reconnection with very large
quasi-steady reconnection rates. The transition to more traditional
''ion-coupled'' reconnection is gradual as the reconnection domain size
increases, with the ions becoming frozen-in in the exhaust when the magnetic
island width in the normal direction reaches many ion inertial lengths. During
this transition, the quasi-steady reconnection rate decreases until the ions
are fully coupled, ultimately reaching an asymptotic value. The scaling of the
ion outflow velocity with exhaust width during this electron-only to
ion-coupled transition is found to be consistent with a theoretical model of a
newly reconnected field line. In order to have a fully frozen-in ion exhaust
with ion flows comparable to the reconnection Alfv\'en speed, an exhaust width
of at least several ion inertial lengths is needed. In turbulent systems with
reconnection occurring between magnetic bubbles associated with fluctuations,
using geometric arguments we estimate that fully ion-coupled reconnection
requires magnetic bubble length scales of at least several tens of ion inertial
lengths
New Particles Working Group Report of the Snowmass 2013 Community Summer Study
This report summarizes the work of the Energy Frontier New Physics working
group of the 2013 Community Summer Study (Snowmass)
Of gastro and the gold standard: evaluation and policy implications of norovirus test performance for outbreak detection
<p>Abstract</p> <p>Background</p> <p>The norovirus group (NVG) of caliciviruses are the etiological agents of most institutional outbreaks of gastroenteritis in North America and Europe. Identification of NVG is complicated by the non-culturable nature of this virus, and the absence of a diagnostic gold standard makes traditional evaluation of test characteristics problematic.</p> <p>Methods</p> <p>We evaluated 189 specimens derived from 440 acute gastroenteritis outbreaks investigated in Ontario in 2006–07. Parallel testing for NVG was performed with real-time reverse-transcriptase polymerase chain reaction (RT<sup>2</sup>-PCR), enzyme immunoassay (EIA) and electron microscopy (EM). Test characteristics (sensitivity and specificity) were estimated using latent class models and composite reference standard methods. The practical implications of test characteristics were evaluated using binomial probability models.</p> <p>Results</p> <p>Latent class modelling estimated sensitivities of RT<sup>2</sup>-PCR, EIA, and EM as 100%, 86%, and 17% respectively; specificities were 84%, 92%, and 100%; estimates obtained using a composite reference standard were similar. If all specimens contained norovirus, RT<sup>2</sup>-PCR or EIA would be associated with > 99.9% likelihood of at least one test being positive after three specimens tested. Testing of more than 5 true negative specimens with RT<sup>2</sup>-PCR would be associated with a greater than 50% likelihood of a false positive test.</p> <p>Conclusion</p> <p>Our findings support the characterization of EM as lacking sensitivity for NVG outbreaks. The high sensitivity of RT<sup>2</sup>-PCR and EIA permit identification of NVG outbreaks with testing of limited numbers of clinical specimens. Given risks of false positive test results, it is reasonable to limit the number of specimens tested when RT<sup>2</sup>-PCR or EIA are available.</p
- …