116 research outputs found

    Direct observation of free-exciton thermalization in quantum-well structures

    Get PDF
    We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum states with picosecond laser pulses. The subsequent relaxation dynamics within the 1s-exciton dispersion is directly monitored by time-resolved studies of the phonon-assisted photoluminescence. It is demonstrated that the free-exciton distribution remains nonthermal for some 100 ps. The observed dynamics is in reasonable agreement with numerical results of a rate-equation model which accounts for the relevant exciton-phonon coupling mechanisms

    Radiative corrections to the excitonic molecule state in GaAs microcavities

    Full text link
    The optical properties of excitonic molecules (XXs) in GaAs-based quantum well microcavities (MCs) are studied, both theoretically and experimentally. We show that the radiative corrections to the XX state, the Lamb shift ΔXXMC\Delta^{\rm MC}_{\rm XX} and radiative width ΓXXMC\Gamma^{\rm MC}_{\rm XX}, are large, about 103010-30 % of the molecule binding energy ϵXX\epsilon_{\rm XX}, and definitely cannot be neglected. The optics of excitonic molecules is dominated by the in-plane resonant dissociation of the molecules into outgoing 1λ\lambda-mode and 0λ\lambda-mode cavity polaritons. The later decay channel, ``excitonic molecule \to 0λ\lambda-mode polariton + 0λ\lambda-mode polariton'', deals with the short-wavelength MC polaritons invisible in standard optical experiments, i.e., refers to ``hidden'' optics of microcavities. By using transient four-wave mixing and pump-probe spectroscopies, we infer that the radiative width, associated with excitonic molecules of the binding energy ϵXX0.91.1\epsilon_{\rm XX} \simeq 0.9-1.1 meV, is ΓXXMC0.20.3\Gamma^{\rm MC}_{\rm XX} \simeq 0.2-0.3 meV in the microcavities and ΓXXQW0.1\Gamma^{\rm QW}_{\rm XX} \simeq 0.1 meV in a reference GaAs single quantum well (QW). We show that for our high-quality quasi-two-dimensional nanostructures the T2=2T1T_2 = 2 T_1 limit, relevant to the XX states, holds at temperatures below 10 K, and that the bipolariton model of excitonic molecules explains quantitatively and self-consistently the measured XX radiative widths. We also find and characterize two critical points in the dependence of the radiative corrections against the microcavity detuning, and propose to use the critical points for high-precision measurements of the molecule bindingenergy and microcavity Rabi splitting.Comment: 16 pages, 11 figures, accepted for publication in Phys. Rev.

    Magnetic Pinching of Hyperbolic Flux Tubes: I. Basic Estimations

    Get PDF
    The concept of hyperbolic flux tubes (HFTs) is a generalization of the concept of separator field lines for coronal magnetic fields with a trivial magnetic topology. An effective mechanism of a current layer formation in HFTs is proposed. This mechanism is called magnetic pinching and it is caused by large-scale shearing motions applied to the photospheric feet of HFTs in a way as if trying to twist the HFT. It is shown that in the middle of an HFT such motions produce a hyperbolic flow that causes an exponentially fast growth of the current density in a thin force-free current layer. The magnetic energy associated with the current layer that is built up over a few hours is sufficient for a large flare. Other implications of HFT pinching for solar flares are discussed as well.Comment: 31 pages, 12 figures, accepted to Astrophysical Journal, added typos in Eq. (A9) and new comments to Sections 2 and 7, references update

    Biexcitons or bipolaritons in a semiconductor micro cavity?

    Full text link

    Polariton propagation in weak confinement quantum wells

    Full text link
    Exciton-polariton propagation in a quantum well, under centre-of-mass quantization, is computed by a variational self-consistent microscopic theory. The Wannier exciton envelope functions basis set is given by the simple analytical model of ref. [1], based on pure states of the centre-of-mass wave vector, free from fitting parameters and "ad hoc" (the so called additional boundary conditions-ABCs) assumptions. In the present paper, the former analytical model is implemented in order to reproduce the centre-of-mass quantization in a large range of quantum well thicknesses (5a_B < L < inf.). The role of the dynamical transition layer at the well/barrier interfaces is discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier exciton eigenstates are computed, and compared with various theoretical models with different degrees of accuracy. Exciton-polariton transmission spectra in large quantum wells (L>> a_B) are computed and compared with experimental results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The sound agreement between theory and experiment allows to unambiguously assign the exciton-polariton dips of the transmission spectrum to the pure states of the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.

    Revisiting Sub Band Gap Emission Mechanism in 2D Halide Perovskites The Role of Defect States

    Get PDF
    Understanding the sub band gap luminescence in Ruddlesden amp; 8722;Popper 2D metal halide hybrid perovskites 2D HaPs is essential for efficient charge injection and collection in optoelectronic devices. Still, its origins are still under debate with respect to the role of self trapped excitons or radiative recombination via defect states. In this study, we characterized charge separation, recombination, and transport in single crystals, exfoliated layers, and polycrystalline thin films of butylammonium lead iodide BA2PbI4 , one of the most prominent 2D HaPs. We combined complementary defect and exciton sensitive methods such as photoluminescence PL spectroscopy, modulated and time resolved surface photovoltage SPV spectroscopy, constant final state photoelectron yield spectroscopy CFSYS , and constant light induced magneto transport CLIMAT , to demonstrate striking differences between charge separation induced by dissociation of excitons and by excitation of mobile charge carriers from defect states. Our results suggest that the broad sub band gap emission in BA2PbI4 and other 2D HaPs is caused by radiative recombination via defect states shallow as well as midgap states rather than self trapped excitons. Density functional theory DFT results show that common defects can readily occur and produce an energetic profile that agrees well with the experimental results. The DFT results suggest that the formation of iodine interstitials is the initial process leading to degradation, responsible for the emergence of midgap states, and that defect engineering will play a key role in enhancing the optoelectronic properties of 2D HaPs in the futur

    Excitons, biexcitons, and phonons in ultrathin CdSe/ZnSe quantum structures

    Get PDF
    The optical properties of CdSe nanostructures grown by migration-enhanced epitaxy of CdSe on ZnSe are studied by time-, energy-, and temperature-dependent photoluminescence and excitation spectroscopy, as well as by polarization-dependent four-wave mixing and two-photon absorption experiments. The nanostructures consist of a coherently strained Zn1−xCdxSe/ZnSe quantum well with embedded islands of higher Cd content with sizes of a few nanometer due to strain-induced CdSe accumulation. The local increase in CdSe concentration results in a strong localization of the excitonic wave function, in an increase in radiative lifetime, and a decrease of the dephasing rate. Local LO-phonon modes caused by the strong modulation of the Cd concentration profile are found in phonon-assisted relaxation processes. Confined biexcitons with large binding energies between 20 and 24 meV are observed, indicating the important role of biexcitons even at room temperature
    corecore