71 research outputs found

    Structure of tin(II) tin(IV) trisulphide, a redetermination

    Full text link

    Genome-Wide Analysis of GLD-1–Mediated mRNA Regulation Suggests a Role in mRNA Storage

    Get PDF
    Translational repression is often accompanied by mRNA degradation. In contrast, many mRNAs in germ cells and neurons are “stored" in the cytoplasm in a repressed but stable form. Unlike repression, the stabilization of these mRNAs is surprisingly little understood. A key player in Caenorhabditis elegans germ cell development is the STAR domain protein GLD-1. By genome-wide analysis of mRNA regulation in the germ line, we observed that GLD-1 has a widespread role in repressing translation but, importantly, also in stabilizing a sub-population of its mRNA targets. Additionally, these mRNAs appear to be stabilized by the DDX6-like RNA helicase CGH-1, which is a conserved component of germ granules and processing bodies. Because many GLD-1 and CGH-1 stabilized mRNAs encode factors important for the oocyte-to-embryo transition (OET), our findings suggest that the regulation by GLD-1 and CGH-1 serves two purposes. Firstly, GLD-1–dependent repression prevents precocious translation of OET–promoting mRNAs. Secondly, GLD-1– and CGH-1–dependent stabilization ensures that these mRNAs are sufficiently abundant for robust translation when activated during OET. In the absence of this protective mechanism, the accumulation of OET–promoting mRNAs, and consequently the oocyte-to-embryo transition, might be compromised

    Review of methods used by chiropractors to determine the site for applying manipulation

    Get PDF
    Background: With the development of increasing evidence for the use of manipulation in the management of musculoskeletal conditions, there is growing interest in identifying the appropriate indications for care. Recently, attempts have been made to develop clinical prediction rules, however the validity of these clinical prediction rules remains unclear and their impact on care delivery has yet to be established. The current study was designed to evaluate the literature on the validity and reliability of the more common methods used by doctors of chiropractic to inform the choice of the site at which to apply spinal manipulation. Methods: Structured searches were conducted in Medline, PubMed, CINAHL and ICL, supported by hand searches of archives, to identify studies of the diagnostic reliability and validity of common methods used to identify the site of treatment application. To be included, studies were to present original data from studies of human subjects and be designed to address the region or location of care delivery. Only English language manuscripts from peer-reviewed journals were included. The quality of evidence was ranked using QUADAS for validity and QAREL for reliability, as appropriate. Data were extracted and synthesized, and were evaluated in terms of strength of evidence and the degree to which the evidence was favourable for clinical use of the method under investigation. Results: A total of 2594 titles were screened from which 201 articles met all inclusion criteria. The spectrum of manuscript quality was quite broad, as was the degree to which the evidence favoured clinical application of the diagnostic methods reviewed. The most convincing favourable evidence was for methods which confirmed or provoked pain at a specific spinal segmental level or region. There was also high quality evidence supporting the use, with limitations, of static and motion palpation, and measures of leg length inequality. Evidence of mixed quality supported the use, with limitations, of postural evaluation. The evidence was unclear on the applicability of measures of stiffness and the use of spinal x-rays. The evidence was of mixed quality, but unfavourable for the use of manual muscle testing, skin conductance, surface electromyography and skin temperature measurement. Conclusions: A considerable range of methods is in use for determining where in the spine to administer spinal manipulation. The currently published evidence falls across a spectrum ranging from strongly favourable to strongly unfavourable in regard to using these methods. In general, the stronger and more favourable evidence is for those procedures which take a direct measure of the presumptive site of care– methods involving pain provocation upon palpation or localized tissue examination. Procedures which involve some indirect assessment for identifying the manipulable lesion of the spine–such as skin conductance or thermography–tend not to be supported by the available evidence.https://doi.org/10.1186/2045-709X-21-3

    Structure of Tin(II) Tin(IV) Trisulphide, a Redetermination

    No full text
    Sn 2S 3 is orthorhombic with Pnma, a=8.878 (2), b=3.751 (1), c=14.020 (3) Aring, Z=4, Dm=4.87, Dx=4.75 Mg m -3, Mr=333.6, mu(Mo Kalpha)=11.8 mm -1, and the final R=0.04 for 1335 observed X-ray data. The crystal structure was redetermined using a crystal of improved quality and a diffractometer and applying corrections for absorption and extinction. The results of the previous determination with film data by Mootz & Puhl (see ibid., vol.23, p.471-476, 1967) were confirmed, but a higher accuracy and more reliable anisotropic thermal parameters were achieved

    Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases

    No full text
    Nonribosomal peptide synthetases (NRPSs) assemble structurally complex peptides from simple building blocks such as amino and carboxyl acids. Product release by macrocyclization or hydrolysis is catalyzed by a thioesterase domain that is an integrated part of the NRPS enzyme. A second thioesterase of type II (TEII) encoded by a distinct gene associated with the NRPS cluster was previously shown by means of gene disruption to be important for efficient product formation. However, the actual role of TEIIs in nonribosomal peptide synthesis remained obscure. Here we report the biochemical characterization of two such TEII enzymes that are associated with the synthetases of the peptide antibiotics surfactin (TEII(srf)) and bacitracin (TEII(bac)). Both enzymes were shown to efficiently regenerate misacylated thiol groups of 4′-phosphopantetheine (4′PP) cofactors attached to the peptidyl carrier proteins (PCPs) of NRPSs. For TEII(srf), a K(M) of 0.9 μM and a k(cat) of 95 min(−1) was determined for acetyl-PCP hydrolysis. Both enzymes could also hydrolyze aminoacyl or peptidyl PCPs, intermediates of nonribosomal peptide synthesis. However, this reaction is unlikely to be of physiological relevance. Similar intermediates of the primary metabolism such as CoA derivatives and acetyl-acyl carrier proteins of fatty acid synthesis were also not significantly hydrolyzed, as investigated with TEII(srf). These findings support a model in which the physiological role of TEIIs in nonribosomal peptide synthesis is the regeneration of misacylated NRPS, which result from the apo to holo conversion of NRPS enzymes because of the promiscuity of dedicated 4′PP transferases that use not only free CoA, but also acyl-CoAs as 4′PP donors
    • …
    corecore