44,463 research outputs found

    Renormalizability of the nuclear many-body problem with the Skyrme interaction beyond mean field

    Full text link
    Phenomenological effective interactions like Skyrme forces are currently used in mean--field calculations in nuclear physics. Mean--field models have strong analogies with the first order of the perturbative many--body problem and the currently used effective interactions are adjusted at the mean--field level. In this work, we analyze the renormalizability of the nuclear many--body problem in the case where the effective Skyrme interaction is employed in its standard form and the perturbative problem is solved up to second order. We focus on symmetric nuclear matter and its equation of state, which can be calculated analytically at this order. It is shown that only by applying specific density dependence and constraints to the interaction parameters could renormalizability be guaranteed in principle. This indicates that the standard Skyrme interaction does not in general lead to a renormalizable theory. For achieving renormalizability, other terms should be added to the interaction and employed perturbatively only at first order.Comment: Revised versio

    The Two-Nucleon 1S0 Amplitude Zero in Chiral Effective Field Theory

    Full text link
    We present a new rearrangement of short-range interactions in the 1S0^1S_0 nucleon-nucleon channel within Chiral Effective Field Theory. This is intended to reproduce the amplitude zero (scattering momentum ≃\simeq 340 MeV) at leading order, and it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to the pion-production threshold. An approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.Comment: 34 pages, 7 figure

    Cataract production in mice by heavy charged particles

    Get PDF
    The cataractogenic effects of heavy charged particles are evaluated in mice in relation to dose and ionization density. The relative biological effectiveness in relation to linear energy transfer for various particles is considered. Results indicated that low single doses (5 to 20 rad) of Fe 56 or Ar 40 particles are cataractogenic at 11 to 18 months after irradiation; onset and density of the opacification are dose related and cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial linear energy transfer dependence. The severity of cataracts is reduced significantly when 417 rad of Co 60 gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of C12 doses over 24 weeks

    Spheres and Prolate and Oblate Ellipsoids from an Analytical Solution of Spontaneous Curvature Fluid Membrane Model

    Full text link
    An analytic solution for Helfrich spontaneous curvature membrane model (H. Naito, M.Okuda and Ou-Yang Zhong-Can, Phys. Rev. E {\bf 48}, 2304 (1993); {\bf 54}, 2816 (1996)), which has a conspicuous feature of representing the circular biconcave shape, is studied. Results show that the solution in fact describes a family of shapes, which can be classified as: i) the flat plane (trivial case), ii) the sphere, iii) the prolate ellipsoid, iv) the capped cylinder, v) the oblate ellipsoid, vi) the circular biconcave shape, vii) the self-intersecting inverted circular biconcave shape, and viii) the self-intersecting nodoidlike cylinder. Among the closed shapes (ii)-(vii), a circular biconcave shape is the one with the minimum of local curvature energy.Comment: 11 pages, 11 figures. Phys. Rev. E (to appear in Sept. 1999

    Learning alters theta-nested gamma oscillations in inferotemporal cortex

    Get PDF
    How coupled brain rhythms influence cortical information processing to support learning is unresolved. Local field potential and neuronal activity recordings from 64- electrode arrays in sheep inferotemporal cortex showed that visual discrimination learning increased the amplitude of theta oscillations during stimulus presentation. Coupling between theta and gamma oscillations, the theta/gamma ratio and the regularity of theta phase were also increased, but not neuronal firing rates. A neural network model with fast and slow inhibitory interneurons was developed which generated theta nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity similar learning-evoked changes could be produced. The model revealed that altered theta nested gamma could potentiate downstream neuron responses by temporal desynchronization of excitatory neuron output independent of changes in overall firing frequency. This learning-associated desynchronization was also exhibited by inferotemporal cortex neurons. Changes in theta nested gamma may therefore facilitate learning-associated potentiation by temporal modulation of neuronal firing

    Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation

    Full text link
    The optimal NN-pulse dynamical decoupling discovered by Uhrig for a spin-boson mmodel [Phys. Rev. Lett, {\bf 98}, 100504 (2007)] is proved to be universal in suppressing to O(TN+1)O(T^{N+1}) the pure dephasing or the longitudinal relaxation of a qubit (or spin-1/2) coupled to a generic bath in a short-time evolution of duration TT. It is also found that for the purpose of suppressing the longitudinal relaxation, an ideal Uhrig π\pi-pulse sequence can be generalized to a sequence consisting of the ideal one superimposed with finite-duration pulses satisfying certain symmetry requirements.Comment: 4 pages, 1 figure

    Contact Atomic Structure and Electron Transport Through Molecules

    Full text link
    Using benzene sandwiched between two Au leads as a model system, we investigate from first principles the change in molecular conductance caused by different atomic structures around the metal-molecule contact. Our motivation is the variable situations that may arise in break junction experiments; our approach is a combined density functional theory and Green function technique. We focus on effects caused by (1) the presence of an additional Au atom at the contact and (2) possible changes in the molecule-lead separation. The effects of contact atomic relaxation and two different lead orientations are fully considered. We find that the presence of an additional Au atom at each of the two contacts will increase the equilibrium conductance by up to two orders of magnitude regardless of either the lead orientation or different group-VI anchoring atoms. This is due to a LUMO-like resonance peak near the Fermi energy. In the non-equilibrium properties, the resonance peak manifests itself in a large negative differential conductance. We find that the dependence of the equilibrium conductance on the molecule-lead separation can be quite subtle: either very weak or very strong depending on the separation regime.Comment: 8 pages, 6 figure

    An exact equilibrium reduced density matrix formulation I: The influence of noise, disorder, and temperature on localization in excitonic systems

    Full text link
    An exact method to compute the entire equilibrium reduced density matrix for systems characterized by a system-bath Hamiltonian is presented. The approach is based upon a stochastic unraveling of the influence functional that appears in the imaginary time path integral formalism of quantum statistical mechanics. This method is then applied to study the effects of thermal noise, static disorder, and temperature on the coherence length in excitonic systems. As representative examples of biased and unbiased systems, attention is focused on the well-characterized light harvesting complexes of FMO and LH2, respectively. Due to the bias, FMO is completely localized in the site basis at low temperatures, whereas LH2 is completely delocalized. In the latter, the presence of static disorder leads to a plateau in the coherence length at low temperature that becomes increasingly pronounced with increasing strength of the disorder. The introduction of noise, however, precludes this effect. In biased systems, it is shown that the environment may increase the coherence length, but only decrease that of unbiased systems. Finally it is emphasized that for typical values of the environmental parameters in light harvesting systems, the system and bath are entangled at equilibrium in the single excitation manifold. That is, the density matrix cannot be described as a product state as is often assumed, even at room temperature. The reduced density matrix of LH2 is shown to be in precise agreement with the steady state limit of previous exact quantum dynamics calculations.Comment: 37 pages, 12 figures. To appear in Phys. Rev.
    • …
    corecore